Advertisement

BioEnergy Research

, Volume 5, Issue 1, pp 106–123 | Cite as

Impacts of Intensive Management and Landscape Structure on Timber and Energy Wood Production and net CO2 Emissions from Energy Wood Use of Norway Spruce

  • Johanna RoutaEmail author
  • Seppo Kellomäki
  • Heli Peltola
Article

Abstract

The aim of this study was to analyze the effects of intensive management and forest landscape structure (in terms of age class distribution) on timber and energy wood production (m3 ha−1), net present value (NPV, € ha−1) with implications on net CO2 emissions (kg CO2 MWh−1 per energy unit) from energy wood use of Norway spruce grown on medium to fertile sites. This study employed simulations using a forest ecosystem model and the Emission Calculation Tool, considering in its analyses: timber (saw logs, pulp) and energy wood (small-sized stem wood and/or logging residuals for top part of stem, branches, and needles) from the first thinning and harvesting residuals and stumps from the final felling. At the stand level, both fertilization and high pre-commercial stand density clearly increased timber production and the amount of energy wood. Short rotation length (40 and 60 years) outputted, on average, the highest annual stem wood production (most fertile and medium fertile sites), the 60 year rotation also outputted the highest average annual net present value (NPV with interest rates of 1–4%). On the other hand, even longer rotation lengths, up to 80 and 100 years, were needed to output the lowest net CO2 emissions per year in energy wood use. At the landscape level, the largest productivity (both for timber and energy wood) was obtained using rotation lengths of 60 and 80 years with an initial forest landscape structure dominated by older mature stands (a right-skewed age-class distribution). If the rotation length was 120 years, the initial forest landscape dominated by young stands (a left-skewed age-class distribution) provided the highest productivity. However, the NPV with interest rate of 2% was, on average, the highest with a right-skewed distribution regardless of the rotation length. If the rotation length was 120 years, normal age class distribution provided, on average, the highest NPV. On the other hand, the lowest emissions (kg CO2 MWh−1a−1) were obtained with the left-skewed age-class distribution using the rotation lengths of 60 and 80 years, and with the normal age-class distribution using the rotation length of 120 years. Altogether, the management regimes integrating both timber and energy wood production and using fertilization provided, on average, the lowest emissions over all management alternatives considered.

Keywords

Rotation length Forest landscape structure Timber production Energy wood Forest management Fertilization CO2 emissions 

Notes

Acknowledgments

This work is partly funded through the Finland Distinguished Professor Programme (FiDiPro) (2009–2012) of the Academy of Finland (Project No. 127299-A5060-06). Furthermore, the Graduate School in Forest Sciences and the School of Forest Sciences, at the University of Eastern Finland, and the Finnish Forest Research Institute (Eastern Finland Regional Unit, Joensuu), are acknowledged for support for this study. Additionally, Dr. David Gritten is thanked for revising the language of this paper.

References

  1. 1.
    Briceño-Elizondo E, Garcia-Gonzalo J, Peltola H, Kellomäki S (2006) Carbon stocks in the boreal forest ecosystem in current and changing climatic conditions under different management regimes. Environ Sci Policy 9(3):237–252CrossRefGoogle Scholar
  2. 2.
    Garcia-Gonzalo J, Peltola H, Zubizarreta A, Kellomäki S (2007) Impacts of forest landscape structure and management on timber production and carbon stocks in the boreal forest ecosystem under changing climate. For Ecol Manage 241:243–257CrossRefGoogle Scholar
  3. 3.
    IPCC, The Intergovernmental Panel on Climate Change (2000) A special report of the IPCC. Land use, land-use change, and forestry. Cambridge University Press, p 30Google Scholar
  4. 4.
    Kellomäki S, Peltola H, Nuutinen T, Korhonen KT, Strandman H (2008) Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management. Philos Trans R Soc 363:2341–2351Google Scholar
  5. 5.
    Lindner M (1999) Forest management strategies in the context of potential climate change. Forstwissenchafliches Centralblatt 118:1–13CrossRefGoogle Scholar
  6. 6.
    Liski J, Pussinen A, Pingoud K, Mäkipää R, Karjalainen T (2001) Which rotation length is favourable to carbon sequestration? Can J For Res 31:2004–2013CrossRefGoogle Scholar
  7. 7.
    Searchinger T, Heimlich R, Houghton RA, Dong FX, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240PubMedCrossRefGoogle Scholar
  8. 8.
    Melillo JM, Reilly JM, Kicklighter DW, Gurgel AC, Cronin TW, Paltsev S, Felzer BS, Wang XD, Sokolov AP, Schlosser CA (2009) Indirect emissions from biofuels: how important? Science 326:1397–1399PubMedCrossRefGoogle Scholar
  9. 9.
    Aber JD, Botkin DB, Melillo JM (1978) Predicting the effects of different harvesting regimes on forest floor dynamics in northern hardwoods. Can J For Res 8:306–315CrossRefGoogle Scholar
  10. 10.
    Cooper CF (1983) Carbon storage in managed forests. Can J For Res 13:155–166CrossRefGoogle Scholar
  11. 11.
    Bradley D (2004) GHG Balances of forest sequestration and a bioenergy system, Case study for IEA Bioenergy Task 38 on GHG balance of biomass and bioenergy system; full report. Available at: http://www.ieabioenergy-task38.org/projects/task38casestudies/index1.htm. Accessed 15 Sept 2010
  12. 12.
    Cowie AL (2004) Greenhouse gas balance of bioenergy systems based on integrated plantation forestry in North East New South Wales, Australia, case study for IEA Bioenergy Task 38 on GHG balance of biomass and bioenergy system; full report. Available at: http://www.ieabioenergy-task38.org/ projects/task38casestudies/index1.htm
  13. 13.
    Jungmeier G, Schwaiger H (2000) Changing carbon storage pools in LCA of bioenergy—a static accounting approach for a dynamic effect. In: Life Cycle Assessment on forestry and forestry products. Cost Action E9, Brussels, Belgium, pp 101–105Google Scholar
  14. 14.
    Recommendations for Forest Management in Finland (2006) Hyvän metsänhoidon suositukset. Forestry Development Centre Tapio, Metsäkustannus Oy. 100 p. (In Finnish) English summary available at http://www.tapio.fi/finnish_forest_management_practice_recom
  15. 15.
    Kuusinen M, Ilvesniemi H (eds) (2008) Environmental effects of energywood harvesting, study report. Forestry Development Centre Tapio and Finnish Forest Research Institute, p 74 (In Finnish)Google Scholar
  16. 16.
    Skogsstyrelssen (2001) Rekommendationer vid uttag av skogsbränsle och kompensationsgödsling. Meddelande 2/2001 (in Swedish)Google Scholar
  17. 17.
    Aber J, Nadelhoffer K, Steudler P, Melillo J (1989) Nitrogen saturation in northern forest ecosystems. Bioscience 39:378–386CrossRefGoogle Scholar
  18. 18.
    Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems. Hypotheses revisited. BioScience 48:921–934CrossRefGoogle Scholar
  19. 19.
    Tamm C (1991) Nitrogen in terrestrial ecosystems, questions of productivity, vegetational changes and ecosystem stability. Ecol Stud 81:115Google Scholar
  20. 20.
    Vitousek P, Howarth R (1991) Nitrogen limitation on land and in the sea—how can it occur? Biogeochem 13:87–115CrossRefGoogle Scholar
  21. 21.
    Martikainen P, Aarnio T, Taavitsainen V-M, Päivinen L, Salonen K (1989) Mineralization of carbon and nitrogen in soil samples taken from three fertilized pine stands: long-term effects. Plant Soil 114:99–106CrossRefGoogle Scholar
  22. 22.
    Södeström B, Bååth E, Lundgren B (1983) Decrease in soil microbial activity and biomass owing to nitrogen amendments. Can J Microbiol 29:1500–1506CrossRefGoogle Scholar
  23. 23.
    Jarvis PG, Ibrom A, Linder S (2005) Carbon forestry-managing forests to conserve carbon. In: Griffiths H, Jarvis PG (eds) The carbon balance of forest biomes. Taylor & Francis Group, UK, pp 331–349Google Scholar
  24. 24.
    Hynynen J, Ahtikoski A, Siitonen J, Sievänen R, Liski J (2005) Applying the MOTTI simulator to analyse the effects of alternative management schedules on timber and non-timber production. For Ecol Manage 207:5–18CrossRefGoogle Scholar
  25. 25.
    Kellomäki S, Väisänen H, Hänninen H, Kolström T, Lauhanen R, Mattila U, Pajari B (1992) Sima: A model for forest succession based on the carbon and nitrogen cycles with application to silvicultural management of the forest ecosystem. Silva Carelica 22:1–91Google Scholar
  26. 26.
    Hyytiäinen K, Ilomäki S, Mäkelä A, Kinnunen K (2006) Economic analysis of stand establishment for Scots pine. Can J For Res 36:1179–1189CrossRefGoogle Scholar
  27. 27.
    Pretzch H, Grote R, Reineking B, Rötzer TH, Seifert ST (2008) Models for forest ecosystem management: a European perspective. Ann Bot 101:1065–1087CrossRefGoogle Scholar
  28. 28.
    Consoli F, Allen D, Boustead I, Fava J, Franklin W, Jensen A, Oude N, Parrish R, Perriman R, Postlethwaite D, Quay B, Seguin J, Vigon B (1993) Guidelines for life-cycle assessment: a “code of practice”. Society of Environmental Toxicology and Chemistry workshop reportGoogle Scholar
  29. 29.
    UNEP (2003) Evaluation of environmental impacts in life cycle assessment. United Nations Environment Programme, Division of Technology, Industry and Economics, Production and Consumption Branch. Meeting Report. p 95Google Scholar
  30. 30.
    Kellomäki S, Strandman H, Nuutinen T, Peltola H, Korhonen KT, Väisänen H (2005) Adaptation of forest ecosystems, forests and forestry to climate change. (FINADAPT Working Paper 4) Finnish Environment Institute Mimeographs, p 334. HelsinkiGoogle Scholar
  31. 31.
    Kolström M (1998) Ecological simulation model for studying diversity of stand structure in boreal forests. Ecol Modell 111:17–36CrossRefGoogle Scholar
  32. 32.
    Kellomäki S, Kolström M (1993) Computations on the yield of timber by Scots pine when subjected to varying levels of thinning under changing climate in southern Finland. For Ecol Manage 59:237–255CrossRefGoogle Scholar
  33. 33.
    Kolström M (1999) Effect of forest management on biodiversity in boreal forests: a model approach. Dissertation. University of Joensuu. Metsätieteellisen tiedekunnan tiedonantoja 86. Joensuu, p 29Google Scholar
  34. 34.
    Routa J, Kellomäki S, Peltola H, Asikainen A (2011) Impacts of thinning and fertilization on timber and energy wood production in Norway spruce and Scots pine: scenario analyses based on ecosystem model simulations. Forestry (in press)Google Scholar
  35. 35.
    Beuker E (1994) Long-term effects of temperature on the wood production of Pinus sylvestris L. and Picea abies (L.) Karst. Scand J For Res 9:34–45CrossRefGoogle Scholar
  36. 36.
    Beuker E, Kolström M, Kellomäki S (1996) Changes in wood production of Picea abies and Pinus sylvestris under a warmer climate: comparison of field measurements and results of a mathematical model. Silva Fenn 30:239–246Google Scholar
  37. 37.
    Mäkipää R, Karjalainen T, Pussinen A, Kukkola M (1998) Effects of nitrogen fertilization on carbon accumulation in boreal forests: model computations compared with the results of long-term fertilization experiments. Chemosphere 36:1155–1160CrossRefGoogle Scholar
  38. 38.
    Hynynen J, Ojansuu R, Hökkä H, Siipilehto J, Salminen H, Haapala P (2002) Models for predicting stand development in MELA System. Finnish Forest Research Institute, Research Papers 835, p 116Google Scholar
  39. 39.
    Finnish Statistical Yearbook of Forestry (2005) Finnish Forest Research Institute, p 418Google Scholar
  40. 40.
    Kilpeläinen A, Alam A, Strandman H, Kellomäki S (2010) Life cycle assessment (LCA) tool for estimating net CO2 exchange of forest production. Manuscript submitted to GCB BioenergyGoogle Scholar
  41. 41.
    Cajander AK (1926) The theory of forest types. Acta For Fenn 29:1–108Google Scholar
  42. 42.
    Järvinen O, Vänni T (1994) Ministry of the Water and Environment Mimeograph 579, 1–68Google Scholar
  43. 43.
    Saksa T, Kankaanhuhta V (2007) Forest regeneration quality and the most important development issues in Southern Finland. Forest regeneration quality control–project final report, p 90 (In Finnish)Google Scholar
  44. 44.
    Äijälä O, Kuusinen M, Koistinen A (2010) Recommendations for energywood harvesting and management in Finland. Forestry Development Centre Tapio, Metsäkustannus Oy, p 31 (in Finnish)Google Scholar
  45. 45.
    Metinfo–Forest Information Services, Finnish Forest Research Institute (2009). Available at: http://www.metla.fi/metinfo/tilasto/index.htm (In Finnish). Accessed 20 Aug 2010
  46. 46.
    Ylimartimo M, Heikkilä J (2003) Automatization of seedling stands management. Forestry magazine. Metsätiet Aikak 4:429–437 (In Finnish)Google Scholar
  47. 47.
    Statistics Finland (2005) Available: http://www.stat.fi/tup/khkinv/polttoaineluokitus.html (in Finnish)
  48. 48.
    Sathre R, Gustavsson L, Bergh J (2010) Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization. Biomass Bioenergy 34:572–581CrossRefGoogle Scholar
  49. 49.
    Eriksson E, Gillespie AR, Gustavsson L, Langvall O, Olsson M, Sathre R, Stendahl J (2007) Integrated carbon analysis of forest management practices and wood substitution. Can J For Res 37:671–681CrossRefGoogle Scholar
  50. 50.
    Oren R, Ellsworth D, Johnsen K, Phillips N, Ewers B, Maier C, Schäfer K, McCarthy H, Hendrey G, McNulty S, Katul G (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–472PubMedCrossRefGoogle Scholar
  51. 51.
    Johnson DW (1992) Effects of forest management on soil carbon storage. Water Air Soil Pollut 64:83–120CrossRefGoogle Scholar
  52. 52.
    Nikinmaa E (1992) Analyses of the growth of Scots pine: matching structure with function. Acta Forestalia Fennica 235:1–68Google Scholar
  53. 53.
    Berg S, Karjalainen T (2003) Comparison of greenhouse gas emissions from forest operations in Finland and Sweden. Forestry 76:3271–3284CrossRefGoogle Scholar
  54. 54.
    Karjalainen T, Asikainen A (1996) Greenhouse gas emissions from the use of primary energy in forest operations and long-distance transportation of timber in Finland. Forestry 69:215–228CrossRefGoogle Scholar
  55. 55.
    Hämäläinen J, Oijala T, Rajamäki J (1992) Cost calculation model for site preparation. Metsämaan muokkauksen kustannuslaskentamalli. Metsäteho, Helsinki, p 13 (in Finnish)Google Scholar
  56. 56.
    Väkevä J, Pennanen O, Örn J (2004) Fuel consumption of timber trucks. Puutavara-autojen polttoaineen kulutus. Metsätehon raportti 166. Helsinki, p 32 (in Finnish)Google Scholar
  57. 57.
    Kuitto P-J, Keskinen S, Lindroos J, Oijala T, Rajamäki J, Räsänen T, Terävä J (1994) Mechanized cutting and forest haulage. Tiedotus Metsäteho, Helsinki. Report 410. p 47 ISBN 951-673-139-2 (in Finnish with English summary)Google Scholar
  58. 58.
    Mäkinen T, Soimakallio S, Paappanen T, Pahkala K, Mikkola H (2006) Greenhouse gas balances and new business opportunities for biomass-based transportation fuels and agrobiomass in Finland. Liikenteen biopolttoaineiden ja peltoenergian kasvihuonekaasutaseet ja uudet liiketoimintakonseptit Espoo 2006. VTT Tiedotteita. Research Notes 2357. 134 s (In Finnish)Google Scholar
  59. 59.
    Laitila J, Ala-Fossi A, Vartiamäki T, Ranta T, Asikainen A (1996) Kantojen noston ja metsäkuljetuksen tuottavuus [Productivity of stump lifting and forest haulage]. Metlan työraportteja, 46, 26. Helsinki (in Finnish)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Finnish Forest Research InstituteJoensuuFinland
  2. 2.School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland

Personalised recommendations