BioEnergy Research

, Volume 4, Issue 3, pp 153–164 | Cite as

Downregulation of Cinnamyl Alcohol Dehydrogenase (CAD) Leads to Improved Saccharification Efficiency in Switchgrass

  • Chunxiang Fu
  • Xirong Xiao
  • Yajun Xi
  • Yaxin Ge
  • Fang Chen
  • Joseph Bouton
  • Richard A. Dixon
  • Zeng-Yu WangEmail author


The bioconversion of carbohydrates in the herbaceous bioenergy crop, switchgrass (Panicum virgatum L.), is limited by the associated lignins in the biomass. The cinnamyl alcohol dehydrogenase (CAD) gene encodes a key enzyme which catalyzes the last step of lignin monomer biosynthesis. Transgenic switchgrass plants were produced with a CAD RNAi gene construct under the control of the maize ubiquitin promoter. The transgenic lines showed reduced CAD expression levels, reduced enzyme activities, reduced lignin content, and altered lignin composition. The modification of lignin biosynthesis resulted in improved sugar release and forage digestibility. Significant increases of saccharification efficiency were obtained in most of the transgenic lines with or without acid pretreatment. A negative correlation between lignin content and sugar release was found among these transgenic switchgrass lines. The transgenic materials have the potential to allow for improved efficiency of cellulosic ethanol production.


Cinnamyl alcohol dehydrogenase Lignin modification Panicum virgatum Saccharification Switchgrass Transgenic plant 



We thank Ko Shimamoto for providing the pANDA vector, Human David for assistance with GC-MS and LC-MS analysis, Stacy Allen and Tui Ray for assistance with real-time RT-PCR analysis, and Dennis Walker for assistance with forage digestibility analysis. The work was supported by the US Department of Agriculture and US Department of Energy Biomass Initiative (project no. 2009-10003-05140), the BioEnergy Science Center and the Samuel Roberts Noble Foundation. The BioEnergy Science Center is supported by the Office of Biological and Environmental Research in the DOE Office of Science.

Supplementary material

12155_2010_9109_MOESM1_ESM.docx (12 kb)
Table S1 Content of cell wall-bound phenolic compounds in internodes of transgenic switchgrass. (DOCX 12 kb)
12155_2010_9109_MOESM2_ESM.docx (12 kb)
Table S2 Cell wall polysaccharides and in vitro true dry matter digestibility (IVTDMD) of transgenic switchgrass plants with downregulated expression of CAD. (DOCX 12 kb)
Supplementary Figure (PPTX 146 kb)


  1. 1.
    Keshwani DR, Cheng JJ (2009) Switchgrass for bioethanol and other value-added applications: a review. Bioresour Technol 100:1515–1523PubMedCrossRefGoogle Scholar
  2. 2.
    McLaughlin SB, Kszos LA (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28:515–535CrossRefGoogle Scholar
  3. 3.
    Bouton JH (2007) Molecular breeding of switchgrass for use as a biofuel crop. Curr Opin Genet Dev 17:553–558PubMedCrossRefGoogle Scholar
  4. 4.
    Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci USA 105:464–469PubMedCrossRefGoogle Scholar
  5. 5.
    Dien BS, Jung H-JG, Vogel KP, Casler MD, Lamb JFS, Iten L et al (2006) Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass Bioenergy 30:880–891CrossRefGoogle Scholar
  6. 6.
    Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761PubMedCrossRefGoogle Scholar
  7. 7.
    Chapple C, Ladisch M, Meilan R (2007) Loosening lignin’s grip on biofuel production. Nat Biotechnol 25:746–748PubMedCrossRefGoogle Scholar
  8. 8.
    Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443PubMedCrossRefGoogle Scholar
  9. 9.
    Ralph J, Akiyama T, Kim H, Lu F, Schatz PF, Marita JM et al (2006) Effects of coumarate 3-hydroxylase down-regulation on lignin structure. J Biol Chem 281:8843–8853PubMedCrossRefGoogle Scholar
  10. 10.
    Hisano H, Nandakumar R, Wang Z-Y (2009) Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell Dev Biol Plant 45:306–313CrossRefGoogle Scholar
  11. 11.
    Rogers LA, Campbell MMC (2004) The genetic control of lignin deposition during plant growth and development. New Phytol 164:30CrossRefGoogle Scholar
  12. 12.
    Baucher M, Monties B, Van Montagu M, Boerjan W (1998) Biosynthesis and genetic engineering of lignin. Crit Rev Plant Sci 17:125–197CrossRefGoogle Scholar
  13. 13.
    Bernard-Vailhe MA, Besle JM, Maillot MP, Cornu A, Halpin C, Knight M (1998) Effect of down-regulation of cinnamyl alcohol dehydrogenase on cell wall composition and on degradability of tobacco stems. J Sci Food Agric 76:505–514CrossRefGoogle Scholar
  14. 14.
    Yahiaoui N, Marque C, Myton KE, Negrel J, Boudet AM (1998) Impact of different levels of cinnamyl alcohol dehydrogenase down-regulation on lignins of transgenic tobacco plants. Planta 204:8–15CrossRefGoogle Scholar
  15. 15.
    Baucher M, Bernard Vailhe MA, Chabbert B, Besle JM, Opsomer C, Van Montagu M et al (1999) Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility. Plant Mol Biol 39:437–447PubMedCrossRefGoogle Scholar
  16. 16.
    Jackson L, Shadle G, Zhou R, Nakashima J, Chen F, Dixon R (2008) Improving saccharification efficiency of alfalfa stems through modification of the terminal stages of monolignol biosynthesis. Bioenerg Res 1:180–192CrossRefGoogle Scholar
  17. 17.
    Baucher M, Chabbert B, Pilate G, Tollier MT, Petit Conil M, Cornu D et al (1996) Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiol 112:1479–1490PubMedGoogle Scholar
  18. 18.
    Lapierre C, Pollet B, Petit Conil M, Toval G, Romero J, Pilate G et al (1999) Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiol 119:153–163PubMedCrossRefGoogle Scholar
  19. 19.
    Pilate G, Guiney E, Holt K, PetitConil M, Lapierre C, Leple JC et al (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20:607–612PubMedCrossRefGoogle Scholar
  20. 20.
    Valério L, Carter D, Rodrigues JC, Tournier V, Gominho J, Marque C et al (2003) Down regulation of cinnamyl alcohol dehydrogenase, a lignification enzyme, in Eucalyptus camaldulensis. Mol Breed 12:157–167CrossRefGoogle Scholar
  21. 21.
    Wróbel-Kwiatkowska M, Starzycki M, Zebrowski J, Oszmianski J, Szopa J (2007) Lignin deficiency in transgenic flax resulted in plants with improved mechanical properties. J Biotechnol 128:919–934PubMedCrossRefGoogle Scholar
  22. 22.
    Chen L, Auh C, Dowling P, Bell J, Chen F, Hopkins A et al (2003) Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase. Plant Biotechnol J 1:437–449PubMedCrossRefGoogle Scholar
  23. 23.
    Sattler SE, Saathoff AJ, Haas EJ, Palmer NA, Funnell-Harris DL, Sarath G et al (2009) A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the sorghum brown midrib6 phenotype. Plant Physiol 150:584–595PubMedCrossRefGoogle Scholar
  24. 24.
    Saballos A, Ejeta G, Sanchez E, Kang C, Vermerris W (2009) A genomewide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the brown midrib6 gene. Genetics 181:783–795PubMedCrossRefGoogle Scholar
  25. 25.
    Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B, Monties B et al (1998) Brown-midrib maize (bm1) - a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 14:545–553PubMedCrossRefGoogle Scholar
  26. 26.
    Wang Z-Y, Ge Y (2006) Recent advances in genetic transformation of forage and turf grasses. In Vitro Cell Dev Biol Plant 42:1–18Google Scholar
  27. 27.
    Moore KJ, Moser LE, Vogel KP, Waller SS, Johnson BE, Pedersen JF (1991) Describing and quantifying growth stages of perennial forage grasses. Agron J 83:1073–1077CrossRefGoogle Scholar
  28. 28.
    Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  29. 29.
    Miki D, Shimamoto K (2004) Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol 45:490–495PubMedCrossRefGoogle Scholar
  30. 30.
    Xi Y, Fu C, Ge Y, Nandakumar R, Hisano H, Bouton J et al (2009) Agrobacterium-mediated transformation of switchgrass and inheritance of the transgenes. Bioenerg Res 2:275–283CrossRefGoogle Scholar
  31. 31.
    Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66PubMedCrossRefGoogle Scholar
  32. 32.
    Ranasinghe S, Rogers ME, Hamilton JGC, Bates PA, Maingon RDC (2008) A real-time PCR assay to estimate Leishmania chagasi load in its natural sand fly vector Lutzomyia longipalpis. Trans R Soc Trop Med Hyg 102:875–882PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang K, Qian Q, Huang Z, Wang Y, Li M, Hong L et al (2006) GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice. Plant Physiol 140:972–983PubMedCrossRefGoogle Scholar
  34. 34.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  35. 35.
    dos Santos WD, MdLL F, Ferrarese-Filho O (2006) High performance liquid chromatography method for the determination of cinnamyl alcohol dehydrogenase activity in soybean roots. Plant Physiol Biochem 44:511–515PubMedCrossRefGoogle Scholar
  36. 36.
    Chen L, Auh C, Chen F, Cheng XF, Aljoe H, Dixon RA et al (2002) Lignin deposition and associated changes in anatomy, enzyme activity, gene expression and ruminal degradability in stems of tall fescue at different developmental stages. J Agric Food Chem 50:5558–5565PubMedCrossRefGoogle Scholar
  37. 37.
    Hatfield RD, Grabber J, Ralph J, Brei K (1999) Using the acetyl bromide assay to determine lignin concentrations in herbaceous plants: some cautionary notes. J Agric Food Chem 47:628–632PubMedCrossRefGoogle Scholar
  38. 38.
    Lapierre C, Pollet B, Rolando C (1995) New insight into the molecular architecture of hardwood lignins by chemical degradative method. Res Chem Intermed 21:397–412CrossRefGoogle Scholar
  39. 39.
    Sarath G, Baird LM, Vogel KP, Mitchell RB (2007) Internode structure and cell wall composition in maturing tillers of switchgrass (Panicum virgatum L.). Bioresour Technol 98:2985–2992PubMedCrossRefGoogle Scholar
  40. 40.
    Shen H, Fu C, Xiao X, Ray T, Tang Y, Wang Z et al (2009) Developmental control of lignification in stems of lowland switchgrass variety Alamo and the effects on saccharification efficiency. Bioenerg Res 2:233–245CrossRefGoogle Scholar
  41. 41.
    Huhman DV, Berhow MA, Sumner LW (2005) Quantification of saponins in aerial and subterranean tissues of Medicago truncatula. J Agric Food Chem 53:1914–1920PubMedCrossRefGoogle Scholar
  42. 42.
    Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268CrossRefGoogle Scholar
  43. 43.
    Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  44. 44.
    Kim S-J, Kim M-R, Bedgar DL, Moinuddin SGA, Cardenas CL, Davin LB et al (2004) Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc Natl Acad Sci USA 101:1455–1460PubMedCrossRefGoogle Scholar
  45. 45.
    Saathoff AJ, Tobias CM, Sattler SE, Haas EJ, Twigg P, Sarath G (2010) Switchgrass contains two cinnamyl alcohol dehydrogenases involved in lignin formation. Bioenerg Res. doi: 10.1007/s12155-010-9106-2 Google Scholar
  46. 46.
    Bernard-Vailhe MA, Cornu A, Robert D, Maillot MP, Besle JM (1996) Cell wall degradability of transgenic tobacco stems in relation to their chemical extraction and lignin quality. J Agric Food Chem 44:1164–1169CrossRefGoogle Scholar
  47. 47.
    Palmer N, Sattler S, Saathoff A, Funnell D, Pedersen J, Sarath G (2008) Genetic background impacts soluble and cell wall-bound aromatics in brown midrib mutants of sorghum. Planta 229:115–127PubMedCrossRefGoogle Scholar
  48. 48.
    Reddy MSS, Chen F, Shadle G, Jackson L, Aljoe H, Dixon RA (2005) Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc Natl Acad Sci USA 102:16573–16578PubMedCrossRefGoogle Scholar
  49. 49.
    Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol 22:746–754PubMedCrossRefGoogle Scholar
  50. 50.
    Boudet AM, Kajita S, Grima-Pettenati J, Goffner D (2003) Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci 8:576–581PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Chunxiang Fu
    • 1
  • Xirong Xiao
    • 1
    • 3
  • Yajun Xi
    • 1
  • Yaxin Ge
    • 1
  • Fang Chen
    • 2
    • 3
  • Joseph Bouton
    • 1
  • Richard A. Dixon
    • 2
    • 3
  • Zeng-Yu Wang
    • 1
    • 3
    Email author
  1. 1.Forage Improvement DivisionThe Samuel Roberts Noble FoundationArdmoreUSA
  2. 2.Plant Biology DivisionThe Samuel Roberts Noble FoundationArdmoreUSA
  3. 3.BioEnergy Science CenterOak RidgeUSA

Personalised recommendations