BioEnergy Research

, Volume 4, Issue 2, pp 120–133 | Cite as

Switchgrass Contains Two Cinnamyl Alcohol Dehydrogenases Involved in Lignin Formation

  • Aaron J. Saathoff
  • Christian M. Tobias
  • Scott E. Sattler
  • Eric J. Haas
  • Paul Twigg
  • Gautam Sarath
Article

Abstract

Lignin content of switchgrass (Panicum virgatum L.), a bioenergy species, is a critical determinant of biomass quality since it can negatively impact conversion of biomass into liquid fuels via biochemical platforms. Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme in lignin biosynthesis. Here, we have shown that cv. Kanlow switchgrass contains at least two closely related CAD genes (PviCAD1 and PviCAD2) that code for proteins containing highly conserved domains and residues that identify them as bona fide CADs. Both recombinant proteins displayed substrate kinetics consistent with their presumed role in cell wall lignification. Proteomic and immunoblotting detected CAD containing spots in internode protein extracts, and proteomic analyses demonstrated that both CADs were expressed. In planta CAD activity, CAD protein levels were observed at all stages of tiller development. A real-time qPCR analysis of the two CADs and one CAD-like sequence indicated that transcripts coding for PviCAD1 were present in greater abundance than those coding for PviCAD2. Transcripts for a third CAD-like sequence (PviAroADH) were present at intermediate levels as compared to PviCAD1 and CAD2. The predicted protein sequence of PviAroADH indicated that it was an enzyme unrelated to lignification based on phylogenetic and protein modeling data.

Keywords

Cinnamyl alcohol dehydrogenase Internodes Panicum virgatum L. Proteomic identification Recombinant enzyme characterization Tillers Switchgrass 

Notes

Acknowledgments

This work was supported by the USDA-ARS CRIS project 5440-21000-028-00D and in part by the Office of Science (BER), US Department of Energy grant number DE-AI02-09ER64829. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

References

  1. 1.
    Adams KL, Wendel JF (2005) Allele-specific, bidirectional silencing of an alcohol dehydrogenase gene in different organs of interspecific diploid cotton hybrids. Genetics 171:2139–2142PubMedCrossRefGoogle Scholar
  2. 2.
    Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61:221–294PubMedCrossRefGoogle Scholar
  3. 3.
    Antizar-Ladislao B, Turrion-Gomez JL (2008) Second-generation biofuels and local bioenergy systems. Biofuel Bioprod Bior 2:455–469CrossRefGoogle Scholar
  4. 4.
    Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201PubMedCrossRefGoogle Scholar
  5. 5.
    Barakat A, Bagniewska-Zadworna A, Choi A, Plakkat U, DiLoreto DS, Yellanki P et al (2009) The cinnamyl alcohol dehydrogenase gene family in Populus: phylogeny, organization, and expression. BMC Plant Biol 9:26PubMedCrossRefGoogle Scholar
  6. 6.
    Baucher M, Bernard-Vailhe MA, Chabbert B, Besle JM, Opsomer C, Van Montagu M et al (1999) Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility. Plant Mol Biol 39:437–447PubMedCrossRefGoogle Scholar
  7. 7.
    Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546PubMedCrossRefGoogle Scholar
  8. 8.
    Boudet AM, Hawkins S, Rochange S (2004) The polymorphism of the genes/enzymes involved in the last two reductive steps of monolignol synthesis: what is the functional significance? CR Biol 327:837–845CrossRefGoogle Scholar
  9. 9.
    Brill EM, Abrahams S, Hayes CM, Jenkins CLD, Watson JM (1999) Molecular characterisation and expression of a wound-inducible cDNA encoding a novel cinnamyl-alcohol dehydrogenase enzyme in lucerne (Medicago sativa L.). Plant Mol Biol 41:279–291PubMedCrossRefGoogle Scholar
  10. 10.
    Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165–182PubMedCrossRefGoogle Scholar
  11. 11.
    Casler MD, Buxton DR, Vogel KP (2002) Genetic modification of lignin concentration affects fitness of perennial herbaceous plants. Theor Appl Genet 104:127–131PubMedCrossRefGoogle Scholar
  12. 12.
    Chapple C, Ladisch M, Meilan R (2007) Loosening lignin’s grip on biofuel production. Nat Biotechnol 25:746–748PubMedCrossRefGoogle Scholar
  13. 13.
    Chaudhary B, Flagel L, Stupar RM, Udall JA, Verma N, Springer NM et al (2009) Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (Gossypium). Genetics 182:503–517PubMedCrossRefGoogle Scholar
  14. 14.
    Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761PubMedCrossRefGoogle Scholar
  15. 15.
    Dien B, Sarath G, Pedersen J, Sattler S, Chen H, Funnell-Harris D et al (2009) Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolor L. Moench) lines with reduced lignin contents. BioEnergy Res 2:153–164CrossRefGoogle Scholar
  16. 16.
    Galliano H, Heller W, Sandermann H (1993) Ozone induction and purification of spruce cinnamyl alcohol dehydrogenase. Phytochemistry 32:557–563CrossRefGoogle Scholar
  17. 17.
    Grabber JH, Mertens DR, Kim H, Funk C, Lu FC, Ralph J (2009) Cell wall fermentation kinetics are impacted more by lignin content and ferulate cross-linking than by lignin composition. J Sci Food Agric 89:122–129CrossRefGoogle Scholar
  18. 18.
    Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B, Monties B et al (1998) Brown-midrib maize (bm1)—a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 14:545–553PubMedCrossRefGoogle Scholar
  19. 19.
    Hawkins SW, Boudet AM (1994) Purification and characterization of cinnamyl alcohol dehydrogenase isoforms from the periderm of Eucalyptus gunnii Hook. Plant Physiol 104:75–84PubMedGoogle Scholar
  20. 20.
    Kayser JPR, Kim JG, Cerny RL, Vallet JL (2006) Global characterization of porcine intrauterine proteins during early pregnancy. Reproduction 131:379–388PubMedCrossRefGoogle Scholar
  21. 21.
    Kim H, Ralph J, Lu FC, Ralph SA, Boudet AM, MacKay JJ et al (2003) NMR analysis of lignins in CAD-deficient plants. Part 1. Incorporation of hydroxycinnamaldehydes and hydroxybenzaldehydes into lignins. Org Biomol Chem 1:268–281PubMedCrossRefGoogle Scholar
  22. 22.
    Kim S-J, Kim M-R, Bedgar DL, Moinuddin SGA, Cardenas CL, Davin LB et al (2004) Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc Natl Acad Sci U S A 101:1455–1460PubMedCrossRefGoogle Scholar
  23. 23.
    Kim SJ, Kim KW, Cho MH, Franceschi VR, Davin LB, Lewis NG (2007) Expression of cinnamyl alcohol dehydrogenases and their putative homologues during Arabidopsis thaliana growth and development: lessons for database annotations? Phytochemistry 68:1957–1974PubMedCrossRefGoogle Scholar
  24. 24.
    Koutaniemi S, Warinowski T, Kärkönen A, Alatalo E, Fossdal C, Saranpää P et al (2007) Expression profiling of the lignin biosynthetic pathway in Norway spruce using EST sequencing and real-time RT-PCR. Plant Mol Biol 65:311–328PubMedCrossRefGoogle Scholar
  25. 25.
    Kutsuki H, Shimada M, Higuchi T (1982) Regulatory role of cinnamyl alcohol dehydrogenase in the formation of guaiacyl and syringyl lignins. Phytochemistry 21:19–23CrossRefGoogle Scholar
  26. 26.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  27. 27.
    Li LG, Cheng XF, Leshkevich J, Umezawa T, Harding SA, Chiang VL (2001) The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell 13:1567–1585PubMedCrossRefGoogle Scholar
  28. 28.
    Li X, Weng JK, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54:569–581PubMedCrossRefGoogle Scholar
  29. 29.
    Luderitz T, Grisebach H (1981) Enzymic synthesis of lignin precursors comparison of cinnamoyl-CoA reductase and cinnamyl alcohol: NADP+ dehydrogenase from spruce (Picea abies L.) and soybean (Glycine max L.). Eur J Biochem 119:115–124PubMedCrossRefGoogle Scholar
  30. 30.
    Ma QH (2010) Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat. J Exp Bot 61:2735–2744PubMedCrossRefGoogle Scholar
  31. 31.
    Mansell RL, Gross GG, Stockigt J, Franke H, Zenk MH (1974) Purification and properties of cinnamyl alcohol dehydrogenase from higher plants involved in lignin biosynthesis. Phytochemistry 13:2427–2435CrossRefGoogle Scholar
  32. 32.
    McAlister FM, Lewis-Henderson WR, Jenkins CLD, Watson JM (2001) Isolation and expression of a cinnamyl alcohol dehydrogenase cDNA from perennial ryegrass (Lolium perenne). Aust J Plant Physiol 28:1085–1094Google Scholar
  33. 33.
    Okada M, Lanzatella C, Saha MC, Bouton J, Wu R, Tobias CM (2010) Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing, and multilocus interactions. Genetics 185:745–760PubMedCrossRefGoogle Scholar
  34. 34.
    Palmer NA, Sattler SE, Saathoff AJ, Funnell D, Pedersen JF, Sarath G (2008) Genetic background impacts soluble and cell wall-bound aromatics in brown midrib mutants of sorghum. Planta 229:115–127PubMedCrossRefGoogle Scholar
  35. 35.
    Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568PubMedCrossRefGoogle Scholar
  36. 36.
    Perlack R, Wright L, Turhollow A, Graham R, Stokes B, Erbach D (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. In: Energy USDoE (ed), Oak Ridge, TN, p 76Google Scholar
  37. 37.
    Pillonel C, Mulder MM, Boon JJ, Forster B, Binder A (1991) Involvement of cinnamyl alcohol dehydrogenase in the control of lignin formation in Sorghum bicolor L. Moench Planta 185:538–544Google Scholar
  38. 38.
    Saballos A, Ejeta G, Sanchez E, Kang C, Vermerris W (2009) A genomewide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (L.) Moench] ddentifies SbCAD2 as the brown midrib6 gene. Genetics 181:783–795PubMedCrossRefGoogle Scholar
  39. 39.
    Sarath G, Baird LM, Vogel KP, Mitchell RB (2007) Internode structure and cell wall composition in maturing tillers of switchgrass (Panicum virgatum L.). Bioresour Technol 98:2985–2992PubMedCrossRefGoogle Scholar
  40. 40.
    Sarath G, Mitchell RB, Sattler SE, Funnell D, Pedersen JF, Graybosch RA et al (2008) Opportunities and roadblocks in utilizing forages and small grains for liquid fuels. J Ind Microbiol Biotech 35:343–354CrossRefGoogle Scholar
  41. 41.
    Sarioglu H, Lottspeich F, Walk T, Jung G, Eckerskorn C (2000) Deamidation as a widespread phenomenon in two-dimensional polyacrylamide gel electrophoresis of human blood plasma proteins. Electrophoresis 21:2209–2218PubMedCrossRefGoogle Scholar
  42. 42.
    Sarni F, Grand C, Boudet AM (1984) Purification and properties of cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase from poplar stems (Populus X euramericana). Eur J Biochem 139:259–265PubMedCrossRefGoogle Scholar
  43. 43.
    Sattler SE, Saathoff AJ, Haas EJ, Palmer NA, Funnell-Harris DL, Sarath G et al (2009) A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the sorghum brown midrib6 phenotype. Plant Physiol 150:584–595PubMedCrossRefGoogle Scholar
  44. 44.
    Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci U S A 105:464–469PubMedCrossRefGoogle Scholar
  45. 45.
    Selman-Housein G, Lopez MA, Hernandez D, Civardi L, Miranda F, Rigau J et al (1999) Molecular cloning of cDNAs coding for three sugarcane enzymes involved in lignification. Plant Sci 143:163–171CrossRefGoogle Scholar
  46. 46.
    Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L et al (2005) CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17:2059–2076PubMedCrossRefGoogle Scholar
  47. 47.
    Somssich IE, Wernert P, Kiedrowski S, Hahlbrock K (1996) Arabidopsis thaliana defense-related protein ELI3 is an aromatic alcohol:NADP(+) oxidoreductase. Proc Natl Acad Sci U S A 93:14199–14203PubMedCrossRefGoogle Scholar
  48. 48.
    Suzuki Y, Kawazu T, Koyama H (2004) RNA isolation from siliques, dry seeds, and other tissues of Arabidiopsis thaliana. Biotechniques 37:542–544PubMedGoogle Scholar
  49. 49.
    Tobias CM, Twigg P, Hayden DM, Vogel KP, Mitchell RM, Lazo GR et al (2005) Analysis of expressed sequence tags and the identification of associated short tandem repeats in switchgrass. Theor Appl Genet 111:956–964PubMedCrossRefGoogle Scholar
  50. 50.
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3 http://genomebiology.com/2002/3/7/research/0034.1
  51. 51.
    Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 11:301–307PubMedCrossRefGoogle Scholar
  52. 52.
    Vogel KP, Mitchell KB (2008) Heterosis in switchgrass: biomass yield in swards. Crop Sci 48:2159–2164CrossRefGoogle Scholar
  53. 53.
    Wyrambik D, Grisebach H (1975) Purification and properties of isoenzymes of cinnamyl-alcohol dehydrogenase from soybean-cell-suspension cultures. Eur J Biochem 59:9–15PubMedCrossRefGoogle Scholar
  54. 54.
    Xu CP, Xu Y, Huang BR (2008) Protein extraction for two-dimensional gel electrophoresis of proteomic profiling in turfgrass. Crop Sci 48:1608–1614CrossRefGoogle Scholar
  55. 55.
    Youn B, Camacho R, Moinuddin SGA, Lee C, Davin LB, Lewis NG et al (2006) Crystal structures and catalytic mechanism of the Arabidopsis cinnamyl alcohol dehydrogenases AtCAD5 and AtCAD4. Org Biomol Chem 4:1687–1697PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang KW, Qian Q, Huang ZJ, Wang YQ, Li M, Hong LL et al (2006) GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice. Plant Physiol 140:972–983PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. (outside the USA) 2010

Authors and Affiliations

  • Aaron J. Saathoff
    • 1
    • 2
  • Christian M. Tobias
    • 3
  • Scott E. Sattler
    • 1
    • 2
  • Eric J. Haas
    • 4
  • Paul Twigg
    • 5
  • Gautam Sarath
    • 1
    • 2
  1. 1.Grain, Forage, and Bioenergy Research Unit, USDA-ARSUniversity of NebraskaLincolnUSA
  2. 2.Department of Agronomy and HorticultureUniversity of NebraskaLincolnUSA
  3. 3.Genomics and Gene Discovery Unit, USDA-ARSAlbanyUSA
  4. 4.Department of ChemistryCreighton UniversityOmahaUSA
  5. 5.Department of BiologyUniversity of Nebraska-KearneyKearneyUSA

Personalised recommendations