BioEnergy Research

, Volume 3, Issue 3, pp 251–261

QTL Mapping of Enzymatic Saccharification in Short Rotation Coppice Willow and Its Independence from Biomass Yield

  • Nicholas J. B. Brereton
  • Frederic E. Pitre
  • Steven J. Hanley
  • Michael J. Ray
  • Angela Karp
  • Richard J. Murphy
Article

Abstract

Short rotation coppice (SRC) willows (Salix spp.) are fast-growing woody plants which can achieve high biomass yields over short growth cycles with low agrochemical inputs. Biomass from SRC willow is already used for heat and power, but its potential as a source of lignocellulose for liquid transport biofuels has still to be assessed. In bioethanol production from lignocellulose, enzymatic saccharification is used as an approach to release glucose from cellulose in the plant cell walls. In this study, 138 genotypes of a willow mapping population were used to examine variation in enzymatic glucose release from stem biomass to study relationships between this trait and biomass yield traits and to identify quantitative trait loci (QTL) associated with enzymatic saccharification yield. Significant natural variation was found in glucose yields from willow stem biomass. This trait was independent of biomass yield traits. Four enzyme-derived glucose QTL were mapped onto chromosomes V, X, XI, and XVI, indicating that enzymatic saccharification yields are under significant genetic influence. Our results show that SRC willow has strong potential as a source of bioethanol and that there may be opportunities to improve the breeding programs for willows for increasing enzymatic saccharification yields and biofuel production.

Keywords

Biofuel Biomass QTL Enzymatic saccharification Willow (Salix

References

  1. 1.
    Meyers RJ (2008) Renewable fuel standard for 2009, 73(226). Federal Register, Issued Pursuant to Section 211(o) of the Clean Air Act, United States, November 14Google Scholar
  2. 2.
    Directive of the European Parliament and of the Council (2008) Promotion of the use of energy from renewable sources. European Union, BrusselsGoogle Scholar
  3. 3.
    Secretary of State for Energy and Climate Change (2009) The UK renewable energy strategy. HM Government, LondonGoogle Scholar
  4. 4.
    Gomez LD, Steele-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytol 178(3):473–485CrossRefPubMedGoogle Scholar
  5. 5.
    Karp A, Shield I (2008) Bioenergy from plants and the sustainable yield challenge. New Phytol 179(1):15–32CrossRefPubMedGoogle Scholar
  6. 6.
    Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454(7206):841–845CrossRefPubMedGoogle Scholar
  7. 7.
    Ragauskas AJ et al (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489CrossRefPubMedGoogle Scholar
  8. 8.
    Tilman D et al (2009) Beneficial biofuels-the food, energy, and environment trilemma. Science 325(5938):270–271CrossRefPubMedGoogle Scholar
  9. 9.
    Searchinger T et al (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240CrossRefPubMedGoogle Scholar
  10. 10.
    Himmel ME (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production (vol 315, pg 804, 2007). Science 316(5827):982–982Google Scholar
  11. 11.
    Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofpr 2(1):26–40Google Scholar
  12. 12.
    Armstrong A, Johns C, Tubby I (1999) Effects of spacing and cutting cycle on the yield of poplar grown as an energy crop. Biomass Bioenerg 17(4):305–314CrossRefGoogle Scholar
  13. 13.
    Mitchell CP, Stevens EA, Watters MP (1999) Short-rotation forestry - operations, productivity and costs based on experience gained in the UK. For Ecol Manag 121(1-2):123–136CrossRefGoogle Scholar
  14. 14.
    Bioenergy Scheme (2009) Best Practice Manual for SRC Willow. Bioenergy Scheme Department of Agriculture, Fisheries and Food, DublinGoogle Scholar
  15. 15.
    Adegbidi HG et al (2001) Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York State. Biomass Bioenerg 20(6):399–411CrossRefGoogle Scholar
  16. 16.
    Argus GW (1997) Infrageneric classification of Salix (Salicaceae) in the new world. Syst Bot Monogr 52:1–121Google Scholar
  17. 17.
    Trybush S, Jahodova S, Macalpine W, Karp A (2008) A genetic study of a Salix germplasm resource reveals new insights into relationships among subgenera, sections and species. BioEnergy Res 1(1):67–79CrossRefGoogle Scholar
  18. 18.
    Cochard H, Casella E, Mencuccini M (2007) Xylem vulnerability to cavitation varies among poplar and willow clones and correlates with yield. Tree Physiol 27(12):1761–1767PubMedGoogle Scholar
  19. 19.
    Gullberg U (1993) Towards making willows pilot species for coppicing production. Forestry Chron 69(6):721–726Google Scholar
  20. 20.
    Hanley SJ (2003) Improving willow breeding efficiency. Thesis, University of BristolGoogle Scholar
  21. 21.
    Larsson S (1998) Genetic improvement of willow for short-rotation coppice. Biomass Bioenerg 15(1):23–26CrossRefGoogle Scholar
  22. 22.
    Robinson KM, Karp A, Taylor G (2004) Defining leaf traits linked to yield in short-rotation coppice Salix. Biomass Bioenerg 26(5):417–431CrossRefGoogle Scholar
  23. 23.
    Ronnberg-Wastljung AC (2001) Genetic structure of growth and phenological traits in Salix viminalis. Can J Forest Res 31(2):276–282CrossRefGoogle Scholar
  24. 24.
    Tharakan PJ, Volk TA, Nowak CA, Abrahamson LP (2005) Morphological traits of 30 willow clones and their relationship to biomass production. Can J Forest Res 35(2):421–431CrossRefGoogle Scholar
  25. 25.
    Serapiglia MJ, Cameron KD, Stipanovic AJ, Smart LB (2008) High-resolution thermogravimetric analysis for rapid characterization of biomass composition and selection of shrub willow varieties. Appl Biochem Biotechnol 145(1–3):3–11CrossRefPubMedGoogle Scholar
  26. 26.
    Rae AM et al (2008) QTL for yield in bioenergy Populus: identifying GxE interactions from growth at three contrasting sites. Tree Genet Genomes 4(1):97–112CrossRefGoogle Scholar
  27. 27.
    Rae AM et al (2009) Five QTL hotspots for yield in short rotation coppice bioenergy poplar: the poplar biomass loci. BMC Plant Biol 9:23CrossRefPubMedGoogle Scholar
  28. 28.
    Tsarouhas V, Gullberg U, Lagercrantz U (2003) Mapping of quantitative trait loci controlling timing of bud flush in Salix. Hereditas 138(3):172–178CrossRefPubMedGoogle Scholar
  29. 29.
    Weih M, Ronnberg-Wastljung AC, Glynn C (2006) Genetic basis of phenotypic correlations among growth traits in hybrid willow (Salix dasyclados x S-viminalis) grown under two water regimes. New Phytol 170(3):467–477CrossRefPubMedGoogle Scholar
  30. 30.
    Tsarouhas V, Gullberg U, Lagercrantz U (2004) Mapping of quantitative trait loci (QTLs) affecting autumn freezing resistance and phenology in Salix. Theor Appl Genet 108(7):1335–1342CrossRefPubMedGoogle Scholar
  31. 31.
    Ronnberg-Wastljung AC, Glynn C, Weih M (2005) QTL analyses of drought tolerance and growth for a Salix dasyclados x Salix viminalis hybrid in contrasting water regimes. Theor Appl Genet 110(3):537–549CrossRefPubMedGoogle Scholar
  32. 32.
    Hanley SJ, Mallott MD, Karp A (2006) Alignment of a Salix linkage map to the Populus genomic sequence reveals macrosynteny between willow and poplar genomes. Tree Genet Genomes 3(1):35–48CrossRefGoogle Scholar
  33. 33.
    Christian DG, Riche AB, Yates NE (2008) Growth, yield and mineral content of Miscanthus x giganteus grown as a biofuel for 14 successive harvests. Ind Crops Prod 28(3):320–327CrossRefGoogle Scholar
  34. 34.
    Selig M, Weiss N, Ji Y (2008) Enzymatic saccharification of lignocellulosic biomass. National Renewable Energy Laboratory, GoldenGoogle Scholar
  35. 35.
    Mosier N et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686CrossRefPubMedGoogle Scholar
  36. 36.
    Patterson HD, Thompson R (1971) Recovery of inter-block information when block sizes are unequal. Biometrika 58(3):545–554CrossRefGoogle Scholar
  37. 37.
    GenStat® (2008) © Lawes Agricultural Trust (Rothamsted Research), 11th edn. VSN International, LondonGoogle Scholar
  38. 38.
    Maliepaard C, Van Ooijen JW (1994) QTL mapping in a full-sib family of an outcrossing species. Biometrics in plant breeding: applications of molecular markers. CPRO-DLO, Wageningen, pp 140–146Google Scholar
  39. 39.
    Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using Rflp linkage maps. Genetics 121(1):185–199PubMedGoogle Scholar
  40. 40.
    Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2002) MapQTL® 4.0. Plant Research International, WageningenGoogle Scholar
  41. 41.
    Lindegaard KN, Parfitt RI, Doonaldson G, Hunter T, Dawson WM, Forbes EGA et al (2001) Comparative trials of elite Swedish and UK biomass willow varieties. Aspects Appl Biol 65:183–192Google Scholar
  42. 42.
    Alfenore S et al (2004) Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Appl Microbiol Biotechnol 63(5):537–542CrossRefPubMedGoogle Scholar
  43. 43.
    Adler A, Verwijst T, Aronsson P (2005) Estimation and relevance of bark proportion in a willow stand. Biomass Bioenergy 29(2):102–113CrossRefGoogle Scholar
  44. 44.
    Klasnja B, Kopitovic S, Orlovic S (2002) Wood and bark of some poplar and willow clones as fuelwood. Biomass Bioenergy 23(6):427–432CrossRefGoogle Scholar
  45. 45.
    Larsson S et al (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24(3–4):151–159CrossRefGoogle Scholar
  46. 46.
    Sassner P, Galbe M, Zacchi G (2005) Steam pretreatment of Salix with and without SO2 impregnation for production of bioethanol. Appl Biochem Biotechnol 121(1–3):1101–1117CrossRefPubMedGoogle Scholar
  47. 47.
    Sassner P, Martensson CG, Galbe M, Zacchi G (2008) Steam pretreatment of H2SO4-impregnated Salix for the production of bioethanol. Bioresour Technol 99(1):137–145CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Nicholas J. B. Brereton
    • 1
    • 2
  • Frederic E. Pitre
    • 2
  • Steven J. Hanley
    • 2
  • Michael J. Ray
    • 1
  • Angela Karp
    • 2
  • Richard J. Murphy
    • 1
  1. 1.Division of BiologyImperial College LondonLondonUK
  2. 2.Centre for Bioenergy and Climate Change, Plant & Invertebrate Ecology DepartmentRothamsted ResearchHarpendenUK

Personalised recommendations