BioEnergy Research

, 2:193 | Cite as

Variations in Cellulosic Ultrastructure of Poplar

  • Marcus Foston
  • Christopher A. Hubbell
  • Mark Davis
  • Arthur J. Ragauskas
Article

Abstract

A key property involved in plant recalcitrance is cellulose crystallinity. In an attempt to establish the typical diversity in cellulose ultrastructure for poplar, the variation and distribution of supramolecular and ultrastructural features, including the fraction of crystalline cellulose forms \( {\text{I}}_{\alpha } \) and \( {\text{I}}_{\beta } \), para-crystalline cellulose and amorphous cellulose content were characterized. In this study, the percent crystallinity (%Cr) and lateral fibril dimensions of cellulose isolated from poplar were determined for 18 poplar core samples collected in the northwestern region of the USA.

Keywords

Cellulose Poplar Solid-state NMR 

References

  1. 1.
    Pu Y, Zhang D, Singh PM, Ragauskas AJ (2008) The new forestry biofuels sector. Biofuels Bioprod Bioref 2:58–73CrossRefGoogle Scholar
  2. 2.
    Stocker M (2008) Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem Int Ed 47:2–14CrossRefGoogle Scholar
  3. 3.
    Lee S, Kim I (1983) Structural properties of cellulose and cellulase reaction mechanism. Biotechnol Bioeng XXV:3–51Google Scholar
  4. 4.
    Mansfield S, Mooney C, Saddler J (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15:804–816CrossRefPubMedGoogle Scholar
  5. 5.
    Okazaki M, Moo-Young M (1978) Kinetics of enzymatic hydrolysis of cellulose: analytical description of a mechanistic model. Biotechnol Bioeng 20:637–663CrossRefPubMedGoogle Scholar
  6. 6.
    Pu Y, Ziemer C, Ragauskas AJ (2006) CP/MAS 13C NMR analysis of cellulase treated bleached softwood kraft pulp. Carbohydr Res 341:591–597CrossRefPubMedGoogle Scholar
  7. 7.
    Larsson T, Wickholm K, Iversen T (1997) A CP/MAS 13C NMR investigation of molecular ordering in celluloses. Carbohydr Res 302:19–25CrossRefGoogle Scholar
  8. 8.
    Larsson T, Hult EL, Wickholm K, Pettersson E, Iversen T (1999) CP/MAS 13C-NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nucl Magn Reson 15:31–40CrossRefPubMedGoogle Scholar
  9. 9.
    Maunu SL, Littia T, Kauliomaki S, Hortling B, Sundquist J (2000) 13C CPMAS NMR investigations of cellulose polymorphs in different pulps. Cellulose 7:147–159CrossRefGoogle Scholar
  10. 10.
    Newman RH (1990) A 13C CP/MAS NMR comparison of wood fractions from spruce. Holzforschung 41:353Google Scholar
  11. 11.
    Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Nucl Magn Reson 15:21–29CrossRefPubMedGoogle Scholar
  12. 12.
    Wickholm K, Larsson T, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312:123–129CrossRefGoogle Scholar
  13. 13.
    Reich P, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. PNAS 101:11001–11006CrossRefPubMedGoogle Scholar
  14. 14.
    Liitiä T (2002) Application of modern NMR spectroscopic techniques to structural studies of wood and pulp components. PhD thesis, Department of Chemistry, University of Helsinki, HelsinkiGoogle Scholar
  15. 15.
    Jahan MS, Mun SP (2005) Effect of tree age on the cellulose structure of Nalita wood (Trema orientalis). Wood Sci Technol 39:367–373CrossRefGoogle Scholar
  16. 16.

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Marcus Foston
    • 1
  • Christopher A. Hubbell
    • 1
  • Mark Davis
    • 2
  • Arthur J. Ragauskas
    • 1
  1. 1.BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and TechnologyGeorgia Institute of TechnologyAtlantaUSA
  2. 2.BioEnergy Science CenterNational Renewable Energy LaboratoryGoldenUSA

Personalised recommendations