BioEnergy Research

, Volume 1, Issue 3–4, pp 193–204 | Cite as

Allelic Association, Chemical Characterization and Saccharification Properties of brown midrib Mutants of Sorghum (Sorghum bicolor (L.) Moench)

  • Ana Saballos
  • Wilfred Vermerris
  • Loren Rivera
  • Gebisa Ejeta
Article

Abstract

Genetic improvement of biomass crops can significantly reduce the overall cost of biomass-to-ethanol conversion. The conversion of cellulose to monomeric sugar units is affected by lignin content and composition. Sorghum has attracted the attention of the scientific and industrial community as a promising source of biomass for bioenergy due to its great yield potential and tolerance to stresses. The brown midrib (bmr) mutants of sorghum are characterized by brown vascular tissue associated with altered lignin content. Twenty-eight bmr mutants have been identified since the late 1970s, but the allelic relationships have not been fully established, and the function of only one of the Bmr loci has been unequivocally established. In this study, we combined genetic and chemical approaches to establish that there are mutations at least four independent bmr loci, represented by the bmr2, bmr6, bmr12 and bmr19 groups. Since each allelic group presents unique staining characteristics, rapid classification of emerging bmr lines into the existing groups can be achieved using phloroglucinol-HCl as a histochemical stain. In addition, pyrolysis-gas chromatography-mass spectrometry, enabled the characterization of changes in subunit lignin composition in each of the allelic groups, to help predict the genes underlying the mutations. Enzymatic saccharification of stover from plants representing each allelic bmr group demonstrated that lignin changes in lines belonging to the bmr2, bmr6 and bmr12 groups can increase glucose yields, up to 25% compared to wild-type isolines. In order to expedite the selection of the bmr mutant alleles in breeding populations, we have developed molecular markers specific for bmr7 and bmr25, two novel mutant alleles of the gene encoding caffeic acid O-methyl transferase. Based on the results from this study, we propose to rename the bmr mutants in a manner that reflects the number of independent loci.

Keywords

bmr brown midrib Ethanol Lignin Lignocellulosic Saccharification Sorghum bicolor 

References

  1. 1.
    Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. Mol Biol 215:403–410Google Scholar
  2. 2.
    Aydin G, Grant R, O'Rear J (1990) Brown midrib sorghum in diets for lactating dairy cows. J Dairy Sci 10:2127–2135Google Scholar
  3. 3.
    Bittinger T, Cantrell R, Axtell J (1981) Allelism tests of the brown-midrib mutants of sorghum. J Hered 72:147–148Google Scholar
  4. 4.
    Bout S, Vermerris W (2003) A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol Genet Genomics 269:205–214PubMedGoogle Scholar
  5. 5.
    Bucholtz D, Cantrell R, Axtell J, Lechtenberg V (1980) Lignin biochemistry of normal and brown midrib mutant sorghum. J Agric Food Chem 28:1239–1241CrossRefGoogle Scholar
  6. 6.
    Chang V, Holtzapple M (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84:5–38PubMedCrossRefGoogle Scholar
  7. 7.
    Chen F, Dixon R (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnol 25:746–748CrossRefGoogle Scholar
  8. 8.
    Chernoglazov V, Ermolova O, Klyosov A (1988) Adsorption of high-purity endo-1,4-beta-glucanases from Trichoderma reesei on components of lignocellulosic materials: Cellulose, lignin, and xylan. Enzyme Microb Technol 10:503–507CrossRefGoogle Scholar
  9. 9.
    Converse A (1993) Substrate factors limiting enzymatic hydrolysis. In: Saddler J (ed) Bioconversion of Forest and Agricultural Plant residues. CAB, WollingfordGoogle Scholar
  10. 10.
    Do C, Pollet B, Thévenin J, Sibout R, Denoue D, Barrière Y, Lapierre C, Jouanin L (2007) Both caffeoyl coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase are involved in redundant functions for lignin, flavanoids and sinapoyl malate biosynthesis. Planta 226:1117–1129PubMedCrossRefGoogle Scholar
  11. 11.
    Fales S, Erbach D, Peterson T, Hess J, Provine W, Runge E, Wilhelm W, Vogel K (2007) Convergence of agriculture and energy: II. Producing cellulosic biomass for biofuels. CAST Commentary QTA2007–2. The Council for Agricultural Science and Technology, AmesGoogle Scholar
  12. 12.
    Fontaine A-S, Bout S, Barrière Y, Vermerris W (2003) Variationin cell wall composition among forage maize (Zea mays L.) inbred lines and its impact on digestibility: Analysis of neutral detergent fiber composition by pyrolysis-gas chromatography mass spectrometry. J Agric Food Chem 51:8080–8087PubMedCrossRefGoogle Scholar
  13. 13.
    Goujon T, Sibout R, Pollet B, Maba B, Nussaume L, Bechtold N, Lu F, Ralph J, Mila I, Barrière Y, Lapierre C, Jouanin L (2003) A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoyl esters. Plant Mol Biol 51:973–989PubMedCrossRefGoogle Scholar
  14. 14.
    Grabber J, Quideau S, Ralph J (1996) p-Coumaroylated syringyl units in maize lignin: Implications for β-ether cleavage by thioacidolysis. Phytochem 43:1189–1194CrossRefGoogle Scholar
  15. 15.
    Guillaumie S, Pichon M, Martinant J, Bosio M, Goffner D, Barrière Y (2007a) Differential expression of phenylpropanoid and related genes in brown-midrib bm1, bm2, bm3 and bm4 young near-isogenic maize plants. Planta 226:235–250PubMedCrossRefGoogle Scholar
  16. 16.
    Guillaumie S, San-Clemente H, Deswartes C, Martinez Y, Lapierre C, Murigneux A, Barrière Y, Pichon M, Goffner D (2007b) MAIZEWALL. Database and developmental gene expression profiling of cell wall biosynthesis and assembly in maize. Plant Physiol 143:339–362bPubMedCrossRefGoogle Scholar
  17. 17.
    Guo D, Chen F, Inoue K, Blount J, Dixon R (2001) Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: Impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13:73–88PubMedCrossRefGoogle Scholar
  18. 18.
    Hatfield RD, Jung HG, Ralph J, Buxton DR, Weimer PJ (1994) A comparison of the insoluble residues produced by the Klason lignin and acid detergent procedures. J Sci Food Agric 65:51–58CrossRefGoogle Scholar
  19. 19.
    Hatfield R, Ralph J, Grabber JH (2008) A potential role for sinapyl p-coumarate as a radical transfer mechanism in grass lignin formation. Planta. doi:10.1007/s00425-008-0791-4
  20. 20.
    Jouanin L, Goujon T, Nadai V, Martin M, Mila I, Vallet C, Pollet B, Yoshinaga A, Chabbert B, Petit-Conil M, Lapierre C (2000) Lignification in transgenic poplars with extremely reduced caffeic acid O-methyltransferase activity. Plant Physiol 123:1363–1374PubMedCrossRefGoogle Scholar
  21. 21.
    Marita J, Vermerris W, Ralph J, Hatfield R (2003) Variations in the cell wall composition of maize brown midrib mutants. J Agric Food Chem 51:1313–1321PubMedCrossRefGoogle Scholar
  22. 22.
    Mooreel K, Ralph J, Lu F, Goeminne G, Busson R, Herdewijn P, Goeman J, Van der Eycken J, Boerjan W, Messens E (2004) Phenolic profiling of caffeic acid O-methyltransferase-deficient poplar reveals novel benzodioxane oligolignols. Plant Physiol 136:4023–4036CrossRefGoogle Scholar
  23. 23.
    Mooney C, Mansfield S, Touhy M, Saddler J (1998) The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods. Biores Technol 94:113–119CrossRefGoogle Scholar
  24. 24.
    Mosier N, Hendrickson R, Brewer M, Ho N, Sedlak M, Ladisch M (2005a) Optimization of pH controlled liquid hot water pretreatment of corn stover. Biores Technol 96:1986–1993aCrossRefGoogle Scholar
  25. 25.
    Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M (2005b) Features of promising technologies for pretreatment of lignocellulosic biomass. Biores Technol 96:673–686bCrossRefGoogle Scholar
  26. 26.
    Mulder M, Van der Hage E, Boon J (1992) Analytical in source pyrolytic methylation electron impact mass spectrometry of phenolics acids in biological matrices. Phytochem Anal 3:165–172CrossRefGoogle Scholar
  27. 27.
    Myton K, Fry S (1994) Intraprotoplastic feruloylation of arabinoxylans in Festuca arudinacea cell cultures. Planta 193:326–330CrossRefGoogle Scholar
  28. 28.
    Oliver A, Grant R, Pedersen J, O'Rear J (2004) Comparison of brown midrib-6 and -18 forage sorghum with conventional sorghum and corn silage in diets of lactating dairy cows. J Diary Sci 87:637–644CrossRefGoogle Scholar
  29. 29.
    Oliver A, Pedersen J, Grant R, Klopfenstein T (2005) Comparative effect of the sorghum bmr-6 and bmr-12 genes I. Forage sorghum yield and quality. Crop Sci 45:2234–2239aCrossRefGoogle Scholar
  30. 30.
    Oliver A, Pedersen J, Grant R, Klopfenstein T, Jose D (2005) Comparative effect of the sorghum bmr-6 and bmr-12 genes II. Grain yield, stover yield and stover quality in grain sorghum. Crop Sci 45:2240–2245bCrossRefGoogle Scholar
  31. 31.
    Palonen H, Tjerneld F, Zacchi G, Tenkanen M (2004) Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated soft wood and isolated lignin. J Biotechnol 107:65–72PubMedCrossRefGoogle Scholar
  32. 32.
    Pedersen J, Vogel K, Funnell D (2005) Impact of reduced lignin on plant fitness. Crop Sci 45:812–819CrossRefGoogle Scholar
  33. 33.
    Perlack R, Wright L, Turhollow A, Graham R, Stokes B, Erbach D (2005) Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply. Oak Ridge National Laboratory, Oak Ridge, DTIC Research Report ADA436753Google Scholar
  34. 34.
    Pillonel C, Moulder M, Boon J, Foster B, Binder A (1991) Involvement of cinnamyl-alcohol dehydrogenase in the control of lignin formation in Sorghum bicolor (L.) Moench. Planta 185:538–544CrossRefGoogle Scholar
  35. 35.
    Porter K, Axtell J, Lechtenberg V, Colenbrander V (1978) Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of sorghum. Crop Sci 18:205–208Google Scholar
  36. 36.
    Ralph J, Grabber J, Hatfield R (1995) Lignin-ferulate cross-links in grasses: active incorporation of ferulate polysaccharides esters into ryegrass lignins. Carbohydr Res 275:167–178CrossRefGoogle Scholar
  37. 37.
    Ralph J, Hatfield R, Quideau S, Helm R, Grabber J, Jung H (1994) Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J Am Chem Soc 116:9448–9456CrossRefGoogle Scholar
  38. 38.
    Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz P, Marita J, Hatfield R, Ralph S, Holst Christensen J, Boerjan W (2004) Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem Rev 3:29–60CrossRefGoogle Scholar
  39. 39.
    Rooney W, Blumenthal J, Bean B, Mullet J (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod Biorefin 1:147–157CrossRefGoogle Scholar
  40. 40.
    Shi C, Koch G, Ouzunova M, Wenzel G, Zein I, Lübberstedt T (2006) Comparison of maize brown-midrib isogenic lines by cellular UV-microspectrometry and comparative transcript profiling. Plant Mol Biol 62:697–714PubMedCrossRefGoogle Scholar
  41. 41.
    Suzuki S, Lam T, Iiyamata K (1997) 5-Hydroxyguaiacyl nuclei as aromatic constituents of native lignin. Phytochem 46:695–700CrossRefGoogle Scholar
  42. 42.
    Theander O, Westerlund EA (1986) Studies on dietary fiber. 3. Improved procedures for analysis of dietary fiber. J Agric Food Chem 34:330–336CrossRefGoogle Scholar
  43. 43.
    Vermerris W, Boon JJ (2001) Tissue-specific patterns of lignification are disturbed in the brown midrib2 mutant of maize (Zea mays L.). J Agric Food Chem 49:721–728PubMedCrossRefGoogle Scholar
  44. 44.
    Vermerris W, Saballos A, Ejeta G, Mosier N, Ladisch M, Carpita N (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci 47:S-142–S-153CrossRefGoogle Scholar
  45. 45.
    Vermerris W, Thompson K, McIntyre L (2002) The maize brown midrib1 locus affects cell wall composition and plant development in a dose-dependent manner. Heredity 88:450–457PubMedCrossRefGoogle Scholar
  46. 46.
    Vignols F, Rigau J, Torres M, Capellades M, Puigdomènech P (1995) The brown-midrib 3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7:407–416PubMedCrossRefGoogle Scholar
  47. 47.
    Vogler R, Ejeta G, Johnson K, Axtell J (1994) Characterization of a new brown midrib sorghum line. Agronomy abstracts. ASA, MadisonGoogle Scholar
  48. 48.
    Yang B, Wyman C (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86:88–98PubMedCrossRefGoogle Scholar
  49. 49.
    Zubieta C, Kota P, Ferrer J, Dixon R, Noel J (2002) Structural basis for the modulation of lignin monomer methylation by caffeic acid/5-hydroxyferulic acid3/5-O-methyltransferase. Plant Cell 14:1265–1277PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Ana Saballos
    • 1
    • 2
  • Wilfred Vermerris
    • 2
    • 3
    • 4
  • Loren Rivera
    • 2
  • Gebisa Ejeta
    • 1
  1. 1.Department of AgronomyPurdue UniversityWest LafayetteUSA
  2. 2.University of Florida Genetics Institute, Cancer and Genetics Research ComplexGainesvilleUSA
  3. 3.Agronomy DepartmentUniversity of FloridaGainesvilleUSA
  4. 4.Laboratory of Renewable Resources EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations