BioEnergy Research

, Volume 1, Issue 1, pp 20–43

Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production

  • Peer M. Schenk
  • Skye R. Thomas-Hall
  • Evan Stephens
  • Ute C. Marx
  • Jan H. Mussgnug
  • Clemens Posten
  • Olaf Kruse
  • Ben Hankamer
Article

Abstract

The use of fossil fuels is now widely accepted as unsustainable due to depleting resources and the accumulation of greenhouse gases in the environment that have already exceeded the “dangerously high” threshold of 450 ppm CO2-e. To achieve environmental and economic sustainability, fuel production processes are required that are not only renewable, but also capable of sequestering atmospheric CO2. Currently, nearly all renewable energy sources (e.g. hydroelectric, solar, wind, tidal, geothermal) target the electricity market, while fuels make up a much larger share of the global energy demand (∼66%). Biofuels are therefore rapidly being developed. Second generation microalgal systems have the advantage that they can produce a wide range of feedstocks for the production of biodiesel, bioethanol, biomethane and biohydrogen. Biodiesel is currently produced from oil synthesized by conventional fuel crops that harvest the sun’s energy and store it as chemical energy. This presents a route for renewable and carbon-neutral fuel production. However, current supplies from oil crops and animal fats account for only approximately 0.3% of the current demand for transport fuels. Increasing biofuel production on arable land could have severe consequences for global food supply. In contrast, producing biodiesel from algae is widely regarded as one of the most efficient ways of generating biofuels and also appears to represent the only current renewable source of oil that could meet the global demand for transport fuels. The main advantages of second generation microalgal systems are that they: (1) Have a higher photon conversion efficiency (as evidenced by increased biomass yields per hectare): (2) Can be harvested batch-wise nearly all-year-round, providing a reliable and continuous supply of oil: (3) Can utilize salt and waste water streams, thereby greatly reducing freshwater use: (4) Can couple CO2-neutral fuel production with CO2 sequestration: (5) Produce non-toxic and highly biodegradable biofuels. Current limitations exist mainly in the harvesting process and in the supply of CO2 for high efficiency production. This review provides a brief overview of second generation biodiesel production systems using microalgae.

Keywords

Algae Carbon sequestration Biofuel Biogas Biohydrogen Biomethane Bioreactor Lipid Oil Raceway pond Triacylglycerides Review 

Abbreviations

BTL

biomass to liquid

CFPP

cold filter plugging point

CO2-e-CO2

equivalents of greenhouse gases

NEB

net energy balance

LHC

light harvesting complex

OAE

oceanic anoxic event

PS

photosystem

RuBP

ribulose-1,5-bisphosphate

Rubisco

ribulose 1,5 bisphosphate carboxylase/oxygenase

TAG

triacylglycerides

References

  1. 1.
    Abu-Rezq T, Al-Musallam L, Al-Shimmari J (1999) Optimum Production Conditions for Different High-Quality Marine Algae. Hydrobiologia 403:97–107Google Scholar
  2. 2.
    Achitouv E, Metzger P, Rager M-N (2004) C31–C34 methylated squalene from a Bolivian strain of Botryococcus braunii. Phytochem 65:3159–3165Google Scholar
  3. 3.
    Algae Biomass Summit (2007) http://www.wsgr.com/news/emailer/PDFs/algae_agenda07.pdf. Cited 30 Nov 2007
  4. 4.
    Alginet (2007) http://217.114.171.142/alginet/dblinks.html. Cited 5. December 2007
  5. 5.
    Amon T, Amon B, Kryvoruchko V (2007) Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresource Technol 98:3204–3212Google Scholar
  6. 6.
    Anderson JP, Badruzsaufari E, Schenk PM et al (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance. Plant Cell 16:3460–3479PubMedGoogle Scholar
  7. 7.
    Andrews TJ, Whitney SM (2003) Manipulating ribulose bisphosphate carboxylase/oxygenase in the chloroplasts of higher plants. Arch Biochem Biophys 414:159–169Google Scholar
  8. 8.
    Apt KE, Kroth-Pancic PG, Grossman AR (1996) Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 252:572–579PubMedGoogle Scholar
  9. 9.
    Arthur M, Dean W, Pratt L (1988) Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature 335:714–717Google Scholar
  10. 10.
    Aslan S, Kapdan I (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70Google Scholar
  11. 11.
    Atlantech (2007) http://www.atlantech.ca/public/products/filters.html. Cited 5 Dec 2007
  12. 12.
    Barbosa B, Jansen M, Ham N et al (2003a) Microalgae cultivation in air-lift reactors: modeling biomass yield and growth rate as a function of mixing frequency. Biotechnol Bioeng 82:170–179PubMedGoogle Scholar
  13. 13.
    Barbosa B, Albrecht M, Wijffels R (2003b) Hydrodynamic stress and lethal events in sparged microalgae cultures. Biotechnol Bioeng 83:112–120PubMedGoogle Scholar
  14. 14.
    Barbosa B, Hadiyanto M, Wijffels R (2004) Overcoming shear stress of microalgae cultures in sparged photobioreactors. Biotechnol Bioeng 85:78–85PubMedGoogle Scholar
  15. 15.
    Becker EW (ed) (1994) Microalgae. Cambridge University Press, CambridgeGoogle Scholar
  16. 16.
    Benemann J, Oswald W (1996) Systems and Economic Analysis of Microalgae Ponds for Conversion of CO2 to Biomass, Final Report to the US Department of Energy. Pittsburgh Energy Technology CenterGoogle Scholar
  17. 17.
    Belkin S, Boussiba S (1991) Resistance of Spirulina platensis to ammonia at high pH values. Plant Cell Physiol 32:953–958Google Scholar
  18. 18.
    Biogas predictions (2007) http://www.energetik-leipzig.de/Biogas/Biogas.htm. Cited 2 Dec 2007
  19. 19.
    Blanco-Canqui H, Lal R (2007) Soil and crop response to harvesting corn residues for biofuel production. Geoderma 141:355–362Google Scholar
  20. 20.
    Boichenko VA, Hoffmann P (1994) Photosynthetic hydrogen production in prokaryotes and eukaryotes—occurrence, mechanism and functions. Photosynthetica 30:527–552Google Scholar
  21. 21.
    Borowitzka MA, Hallegraeff GM (2007) Economic importance of algae. In: McCarthy PM, Orchard AE (eds) Algae of Australia: introduction. ABRS, Canberra, pp 594–622Google Scholar
  22. 22.
    Boswell C, Sharma N, Sahi S (2002) Copper tolerance and accumulation potential of Chlamydomonas reinhardtii. Bull Environ Contam Toxicol 69:546–553PubMedGoogle Scholar
  23. 23.
    Bourne JK (2007) Green dreams. Natl Geographic 212(4):38–59Google Scholar
  24. 24.
    BP statistics (2007) http://www.bp.com/statisticalreview. Cited 30 Nov 2007
  25. 25.
    Bridgwater A, Maniatis K (2004) The production of biofuels by thermal chemical processing of biomass. In: Archer M, Barber J (eds) Molecular to global photosynthesis. Imperial College Press, LondonGoogle Scholar
  26. 26.
    Brown A, Knights B, Conway E (1969) Hydrocarbon content and its relationship to physiological state in the green alga Botryococcus braunii. Phytochem 8:543–547Google Scholar
  27. 27.
    Carlozzi P (2003) Dilution of solar radiation through “culture lamination” in photobioreactor rows facing south north: a way to improve the efficiency of light utilization. Biotechnol Bioeng 81:305–315PubMedGoogle Scholar
  28. 28.
    Casadevall E, Dif D, Largeau C et al (1985) Studies on batch and continuous cultures of Botryococcus braunii: hydrocarbon production in relation to physiological state, cell ultrastructure, and phosphate nutrition. Biotechnol Bioeng 27:286–295PubMedGoogle Scholar
  29. 29.
    Chisti Y (2007) Biodiesel from microalgae. Biotech Advances 25:294–306Google Scholar
  30. 30.
    Cho S, Ji SC, Hur S, Bae J, Park IS, Song YC (2007) Optimum temperature and salinity conditions for growth of green algae Chlorella ellipsoidea and Nannochloris oculata. Fish Sci 73:1050–1056Google Scholar
  31. 31.
  32. 32.
    Collard J-M, Matagne R (1990) Isolation and genetic analysis of Chlamydomonas reinhardtii strains resistant to cadmium. Appl Environ Microbiol 56:2051–2055PubMedGoogle Scholar
  33. 33.
    Collard J-M, Matagne R (1994) Cd2+ Resistance in wild-type and mutant strains of Chlamydomonas reinhardtii. Environ Exp Bot 34:235–244Google Scholar
  34. 34.
    Conklin PL, Pallanca JE, Last RL et al (1997) l-ascorbic acid metabolism in the ascorbate-deficient Arabidopsis mutant vtc1. Plant Physiol 115:1277–1285PubMedGoogle Scholar
  35. 35.
    Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Intern J Hydrogen Energy 26:13–28Google Scholar
  36. 36.
    Dayananda C, Sarada R, Bhattachary S et al (2005) Effect of media and culture conditions on growth and hydrocarbon production by Botryococcus braunii. Process Biochem 40:3125–3131Google Scholar
  37. 37.
    Dayananda C, Sarada R, Usha Rani M (2007) Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass Bioenergy 31:87–93Google Scholar
  38. 38.
    Degen J, Uebele A, Retze A et al (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92:89–94PubMedGoogle Scholar
  39. 39.
    Dehesh K, Jones A, Knutzon DS et al (1996) Production of high levels of 8:0 and 10:0 fatty acids in transgenic canola by overexpression of Ch FatB2, a thioesterase cDNA from Cuphea hookeriana. Plant J 9:167–172PubMedGoogle Scholar
  40. 40.
    Deloménie C, Foti E, Floch E et al (2007) A new homolog of FocA transporters identified in cadmium-resistant Euglena gracilis. Biochemical and Biophysical Research Communications 358:455–461PubMedGoogle Scholar
  41. 41.
    Demain AL, Newcomb M, Wu JH (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154PubMedGoogle Scholar
  42. 42.
    Doebbe A, Rupprecht J, Beckmann J et al (2007) Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: impacts on biological H2 production. J Biotechnol 131:27–33PubMedGoogle Scholar
  43. 43.
    Dombrecht B, Xue GP, Edgar CI et al (2007) AtMYC2 modulates diverse jasmonate-dependent functions by coordination of a transcriptional cascade. Plant Cell 19:2225–2245PubMedGoogle Scholar
  44. 44.
    Dong QL, Zhao XM, Ma HW et al (2006) Metabolic flux analysis of the two astaxanthin-producing microorganisms Haematococcus pluvialis and Phaffia rhodozyma in the pure and mixed cultures. Biotechnol J 1:1283–1292PubMedGoogle Scholar
  45. 45.
    Doucha J, Straka F, Livansky K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412Google Scholar
  46. 46.
    Dunahay TG (1993) Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. Biotechniques 15:452–460PubMedGoogle Scholar
  47. 47.
    Dunahay TG, Adler SA, Jarvik JW (1997) Transformation of microalgae using silicon carbide whiskers. Methods Mol Biol 62:503–509PubMedGoogle Scholar
  48. 48.
    Dumitrescu M, Brassell S (2005) Biogeochemical assessment of sources of organic matter and paleoproductivity during the early Aptian oceanic anoxic event at Shatsky Rise, ODP Leg 198. Org Geochem 36:1002–1022Google Scholar
  49. 49.
    Eccleston VS, Ohlrogge JB (1998) Expression of lauroyl-acyl carrier protein thioesterase in Brassica napus seeds induces pathways for both fatty acid oxidation and biosynthesis and implies a set point for triacylglycerol accumulation. Plant Cell 10:613–622PubMedGoogle Scholar
  50. 50.
    Ecoworld (2007) http://www.ecoworld.com/home/articles2.cfm?tid=405. Cited 10 December 2007
  51. 51.
    Elrad D, Grossman AR (2004) A genome’s-eye view of the light-harvesting polypeptides of Chlamydomonas reinhardtii. Curr Genetics 45:61–75Google Scholar
  52. 52.
    Eriksen N, Riisgård F, Gunther W et al (2007) On-line estimation of O2 production, CO2 uptake, and growth kinetics of microalgal cultures in a gas-tight photobioreactor. J Appl Phycol 19:161–174PubMedGoogle Scholar
  53. 53.
    FAO (2007) Food and Agriculture Organization of the United Nations. www.fao.org. Cited 6 Dec 2007
  54. 54.
    Fargasová A (1996) Inhibitive effect of organotin compounds on the chlorophyll content of the green freshwater alga Scenedesmus quadricauda. Bull Environ Contam Toxicol 57:99–106PubMedGoogle Scholar
  55. 55.
    Fernie AR, Geigenberger P, Stitt M (2005) Flux an important, but neglected, component of functional genomics. Curr Opin Plant Biol 8:174–182PubMedGoogle Scholar
  56. 56.
    Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48:155–171PubMedGoogle Scholar
  57. 57.
    Forestier M, King P, Zhang LP et al (2003) Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. Europ J Biochem 270:2750–2758PubMedGoogle Scholar
  58. 58.
    Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416PubMedGoogle Scholar
  59. 59.
    Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240PubMedGoogle Scholar
  60. 60.
    Galinski E (1995) Osmoadaptation in bacteria. Adv Microbiol Physiol 37:273–328Google Scholar
  61. 61.
    García-Ríos V, Freile-Pelegrín Y, Robledo D et al (2007) Cell wall composition affects cd2+ accumulation and intracellular thiol peptides in marine red algae. Aquatic Toxicol 81:65–72Google Scholar
  62. 62.
    Gekeler W, Grill E, Winnacker E et al (1988) Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch Microbiol 150:197–202Google Scholar
  63. 63.
    Ghirardi ML, Zhang JP, Lee JW et al (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18:506–511PubMedGoogle Scholar
  64. 64.
    Gillet S, Decottignies P, Chardonnet S et al (2006) Cadmium response and redoxin targets in Chlamydomonas reinhardtii: a proteomic approach. Photosynthesis Res 89:201–211Google Scholar
  65. 65.
    Gollueke CG, Oswald WJ (1959) Biological conversion of light energy to the chemical energy of methane. Appl Microbiol 7:219–227Google Scholar
  66. 66.
    Gordon M, Polle J (2007) Ultrahigh productivity from algae. Appl Microbiol Biotechnol 76:969–975PubMedGoogle Scholar
  67. 67.
    Graves DA, Tevault CV, Greenbaum E (1989) Control of photosynthetic reductant—the role of light and temperature on sustained hydrogen photoevolution by Chlamydomonas sp. in an anoxic, carbon dioxide-containing atmosphere. Photochem Photobiol 50:571–576Google Scholar
  68. 68.
    Grima E, Fernández F, Camacho F et al (1999) Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol 70:231–247Google Scholar
  69. 69.
    Grobbelaar JU, Nedbal L, Tichy V (1996) Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J Appl Phycol 8:335–343Google Scholar
  70. 70.
    Gudin C, Chaumont D (1991) Cell fragility—the key problem of microalgae mass production in closed photobioreactors. Bioresour Technol 38:145–151Google Scholar
  71. 71.
    Gunstone FD, Hilditch TP (1945) The union of gaseous oxygen with methyl oleate, linoleate and linolenate. J Chem Soc 105:836–841Google Scholar
  72. 72.
    Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Progress Lipid Res 45:160–186Google Scholar
  73. 73.
    Haag A (2007) Algae bloom again. Nature 447:520–521PubMedGoogle Scholar
  74. 74.
    Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF et al (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556PubMedGoogle Scholar
  75. 75.
    Hammouda O, Gaber A, Abdel-Raouf N (1995) Microalgae and wastewater treatment. Ecotoxicol Environ Safety 31:205–210PubMedGoogle Scholar
  76. 76.
    Hankamer B, Lehr F, Rupprecht J et al (2007) Photosynthetic biomass and H2 production: From bioengineering to bioreactor scale up. Physiol Plantarum 131:10–21Google Scholar
  77. 77.
    Happe T, Naber JD (1993) Isolation, characterization and N-terminal amino-acid sequence of hydrogenase from the green-alga Chlamydomonas reinhardtii. Eur Biochem 214:475–481Google Scholar
  78. 78.
    Harris EH (1989) The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. Academic Press, San DiegoGoogle Scholar
  79. 79.
    Hejazi MA, Wijffels RH (2004) Milking of microalgae. Trends Biotechnol 22:189–194PubMedGoogle Scholar
  80. 80.
    Hill J, Nelson E, Tilman D et al (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Poc Natl Acad Sci USA 103:11206–11210Google Scholar
  81. 81.
    Horton P, Ruban A (2005) Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. J Exp Bot 56:365–373PubMedGoogle Scholar
  82. 82.
    Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684PubMedGoogle Scholar
  83. 83.
    Huntley ME, Redalje DG (2006) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitigation and Adaption Strategies for Global Change 12:573–608Google Scholar
  84. 84.
    IPCC (2007) Intergovernmental Panel on Climate Change ‘AR4 Synthesis report’. www.ipcc.ch. Cited 30 Nov 2007
  85. 85.
    Janssen M, Slenders P, Tramper J et al (2001) Photosynthetic efficiency of Dunaliella tertiolecta under short light/dark cycles. Enzyme Microb Tech 29:298–305Google Scholar
  86. 86.
    Jo J, Lee D, Park J (2006) Modeling and optimization of photosynthetic hydrogen gas production by green alga Chlamydomonas reinhardtii in sulfur-deprived circumstance. Biotechnol Progress 22:431–437Google Scholar
  87. 87.
    Kim J, Kang C, Park T et al (2006) Enhanced hydrogen production by controlling light intensity in sulfur-deprived Chlamydomonas reinhardtii culture. Intern J Hydrogen Energy 31:1585–1590Google Scholar
  88. 88.
    Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87:1228–1232PubMedGoogle Scholar
  89. 89.
    Kirst G (1977) Ion composition of unicellular marine and freshwater algae, with special reference to Platymonas subcordiformis cultivated in media with different osmotic strengths. Oecologia 28:177–189Google Scholar
  90. 90.
    Kirst G (1990) Salinity tolerance of eukaryotic marine-algae. Ann Rev Plant Physiol Plant Mol Biol 41:21–53Google Scholar
  91. 91.
    Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technol 86:1059–1070Google Scholar
  92. 92.
    Knothe G, Gerpen JV, Krahl J (2005) The biodiesel handbook. AOCS Press, Urbana, IL, pp 277–280Google Scholar
  93. 93.
    Kosourov S, Patrusheva E, Ghirardi ML et al (2007) A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions. J Biotechnol 128:776–787PubMedGoogle Scholar
  94. 94.
    Kroth PG (2007) Genetic transformation: a tool to study protein targeting in diatoms. Methods Mol Biol 390:257–268PubMedCrossRefGoogle Scholar
  95. 95.
    Kruse O, Rupprecht J, Bader K-P et al (2005a) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280:34170–34177PubMedGoogle Scholar
  96. 96.
    Kruse O, Rupprecht J, Mussgnug JR et al (2005b) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 4:957–970PubMedGoogle Scholar
  97. 97.
    Kurano N, Ikemoto H, Miyashita H et al (1995) Fixation and utilization of carbon dioxide by microalgal photosynthesis. Energy Convers Manag 36:689–692Google Scholar
  98. 98.
    Lehmann J (2007) A Handful of carbon. Nature 447:143–144PubMedGoogle Scholar
  99. 99.
    León-Bañares R, González-Ballester D, Galván A et al (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22:45–52PubMedGoogle Scholar
  100. 100.
    Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98(4):764–771PubMedGoogle Scholar
  101. 101.
    Lindon JC, Holmes E, Nicholson JK (2004) Metabonomics and its role in drug development and disease diagnosis. Expert Rev Mol Diagn 4:189–199PubMedGoogle Scholar
  102. 102.
  103. 103.
    Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377–390PubMedGoogle Scholar
  104. 104.
    Mann CC (1999) Genetic engineers aim to soup up crop photosynthesis. Science 283:314–316PubMedGoogle Scholar
  105. 105.
    Marris E (2006) Black is the new green. Nature 442:624–626PubMedGoogle Scholar
  106. 106.
    McElwain J, Wade-Murphy J, Hesselbo S (2005) Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into gondwana coals. Nature 435:479–482PubMedGoogle Scholar
  107. 107.
    McGrath KC, Dombrecht B, Manners JM et al (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genomewide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139:949–959PubMedGoogle Scholar
  108. 108.
    McHugh J, Spanier J (1994) Isolation of cadmium sensitive mutants in Chlamydomonas reinhardtii by transformation/insertional mutagenesis. FEMS Microbiol Lett 124:239–244Google Scholar
  109. 109.
    Meiser A, Schmid-Staiger U, Trosch W (2004) Optimization of eicosapentaenoic acid production by Phaeodactylum tricornutum in the flat panel airlift (FPA) reactor. J Appl Phycol 16:215–225Google Scholar
  110. 110.
    Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage? Trends Plant Sci 4:130–135PubMedGoogle Scholar
  111. 111.
    Melis A, Zhang LP, Forestier M et al (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136PubMedGoogle Scholar
  112. 112.
    Merchant S, Allen M, Kropat J (2006) Between a rock and a hard place: trace element nutrition in Chlamydomonas. Biochim Biophys Acta 1763:578–594PubMedGoogle Scholar
  113. 113.
    Merchant SS, Prochnik SE, Vallon O et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250PubMedGoogle Scholar
  114. 114.
    Metting F (1996) Biodiversity and application of microalgae. J Industrial Microbiol Biotechnol 17:477–489Google Scholar
  115. 115.
    Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496PubMedGoogle Scholar
  116. 116.
    Minglin L, Yuxiu Z, Tuanyao C (2005) Identification of genes up-regulated in response to Cd exposure in Brassica juncea L. Gene 363:151–158PubMedGoogle Scholar
  117. 117.
    Molina Grima EM, Fernandez FGA et al (1999) Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol 70:231–247Google Scholar
  118. 118.
    Molina Grima EM, Belarbi E-H, Acién Fernández FG et al (2002) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515Google Scholar
  119. 119.
    MPOC (2007) Malaysian Palm Oil Counsel. In: Fact Sheets Malaysian Palm Oil. 6Google Scholar
  120. 120.
    Muñoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815PubMedGoogle Scholar
  121. 121.
    Mus F, Dubini A, Seibert M et al (2007) Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282:25475–25486PubMedGoogle Scholar
  122. 122.
    Mussgnug J, Thomas-Hall S, Rupprecht J et al (2007) Engineering photosynthetic light capture: Impacts on improved solar energy to biomass conversion. Plant Biotech J 5:802–814Google Scholar
  123. 123.
    Nicholson JK, Lindon JC, Holmes E (1999) Metabonomics: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189PubMedGoogle Scholar
  124. 124.
    Nicholson JK, Connelly J, Lindon JC et al (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1:153–161PubMedGoogle Scholar
  125. 125.
    Oilworld (2007) http://www.oilworld.biz. Cited 30 Nov 2007
  126. 126.
  127. 127.
    Paerl HW, Fulton RS 3rd, Moisander PH et al (2001) Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Scientific World Journal 1:76–113 Apr 4PubMedGoogle Scholar
  128. 128.
    Palmer MW, Pimentel D, Lal R et al (2007) Biofuels and the environment. Science 317:897PubMedGoogle Scholar
  129. 129.
    Parry MAJ, Andralojc PJ, Mitchell RAC et al (2003) Manipulation of Rubisco: the amount, activity, function and regulation. J Exp Bot 54:1321–1333PubMedGoogle Scholar
  130. 130.
    Pascal AA, Liu Z, Broess K et al (2007) Molecular basis of photoprotection and control of photosynthetic light harvesting. Nature 436:134–137Google Scholar
  131. 131.
    Patzek T (2004) Thermodynamics of the corn-ethanol biofuel cycle. Crit Rev Plant Sci 23:519–567Google Scholar
  132. 132.
    Perner-Nochta I, Posten C (2007) Simulations of light intensity variation in photobioreactors. J Biotechnol 131:276–285PubMedGoogle Scholar
  133. 133.
    Pinto E, Siguad-Kutner T, Leitão M et al (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018Google Scholar
  134. 134.
    Polle JEW, Kanakagiri S, Jin E, Masuda T et al (2002) Truncated chlorophyll antenna size of the photosystems—a practical method to improve microalgal productivity and hydrogen production in mass culture. Int J Hydrogen Energy 27:1257–1264Google Scholar
  135. 135.
    Poulsen B, Iversen J (1999) Membrane sparger in bubble column, airlift, and combined membrane–ring sparger bioreactors. Biotechnol Bioeng 64:452–458PubMedGoogle Scholar
  136. 136.
    Prochnow A, Heiermann M, Drenckhan A et al (2005) Seasonal Pattern of Biomethanisation of Grass from Landscape Management. Agricultural Engineering International: the CIGR Ejournal. Manuscript EE 05 011. Vol. VIIGoogle Scholar
  137. 137.
    Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293PubMedGoogle Scholar
  138. 138.
    Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648PubMedGoogle Scholar
  139. 139.
    Pulz O (2007) Performance Summary Report: Evaluation of GreenFuel’s 3D matrix Algae Growth Engineering Scale UnitGoogle Scholar
  140. 140.
    Ranga Rao A, Dayananda C, Sarada R et al (2007a) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresource Technol 98:560–564Google Scholar
  141. 141.
    Ranga Rao A, Sarada R, Ravishankar G (2007b) Influence of CO2 on growth and hydrocarbon production in Botryococcus braunii. J Microbiol Biotechnol 17:414–419PubMedGoogle Scholar
  142. 142.
    Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815PubMedGoogle Scholar
  143. 143.
    Remacle C, Cardol P, Coosemans N et al (2006) High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. Proc Natl Acad Sci USA 103:4771–4776PubMedGoogle Scholar
  144. 144.
    Reynolds CS (1984) The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, UKGoogle Scholar
  145. 145.
    Richmond A (1986) Outdoor mass cultures of microalgae. In: Richmond A (ed) Handbook of microalgal mass culture 1986. CRC, Boca Raton, pp 285–330Google Scholar
  146. 146.
    Richmond A (2004) Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia 512:33–37Google Scholar
  147. 147.
    Righelato R, Spracklen D (2007) Carbon mitigation by biofuels or by saving and restoring forests. Science 317:902PubMedGoogle Scholar
  148. 148.
    Rochaix J-D, Goldschmidt-Clermont M, Merchant S (eds) (1998) The molecular biology of chloroplasts and mitochondria in Chlamydomonas. Dordrecht. Kluwer Academic PublishersGoogle Scholar
  149. 149.
    Rodhe W (1969) Crystallization of eutrophication concepts in northern Europe. In Eutrophication: causes, consequences, correctives. Washington, DC, National Academy of Sciences, pp 50–64Google Scholar
  150. 150.
    Rosello Sastre R, Csögör Z, Perner-Nochta I et al (2007) Scale-down of microalgae cultivations in tubular photo-bioreactors—a conceptual approach. J Biotechnol 132:127–133PubMedGoogle Scholar
  151. 151.
    Rupprecht J, Hankamer B, Mussgnug JH et al (2006) Perspectives and advances of biological H2 production in microorganisms. Appl Microbiol Biotech 72:442–449Google Scholar
  152. 152.
    Sato T, Usui S, Tsuchiya Y et al (2006) Invention of outdoor closet type photobioreactor for microalgae. Energy Convers Manag 47:791–799Google Scholar
  153. 153.
    Sawayama S, Inoue S, Yokoyama S (1994) Continuous-culture of hydrocarbon-rich microalga Botryococcus braunii in secondarily treated sewage. Appl Microbiol Biotechnol 41:729–731Google Scholar
  154. 154.
    Sawayama S, Minowa T, Dote Y et al (1992) Growth of the hydrocarbon-rich microalga Botryococcus braunii in secondarily treated sewage. Appl Microbiol Biotechnol 38:135–138Google Scholar
  155. 155.
    Schaub G, Kolb T, Steiger W (2007) Biofuels. Second-generation biofuels. Chemie Ingenieurtechnik 79:1325–1326Google Scholar
  156. 156.
    Schmidt CW (2007) Biodiesel: cultivating alternative fuels. Environ Health Perspect. 115(2):A86–A91PubMedCrossRefGoogle Scholar
  157. 157.
    Schubert C (2006) Can biofuels finally take center stage? Nature Biotechnol 24:777–784Google Scholar
  158. 158.
    Schwender J, Goffman F, Ohlrogge JB et al (2004) Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779–782PubMedGoogle Scholar
  159. 159.
    Schwender J, Seemann M, Lichtenthaler HK et al (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J 316:73–80PubMedGoogle Scholar
  160. 160.
    Sellner KG, Doucette GJ, Kirkpatrick GJ (2003) Harmful algal blooms: causes, impacts and detection. J Ind Microbiol Biotechnol 30:383–406PubMedGoogle Scholar
  161. 161.
    Shastri AA, Morgan JA (2007) A transient isotopic labeling methodology for 13C metabolic flux analysis of photoautotrophic microorganisms. Phytochem 68:2302–2312Google Scholar
  162. 162.
    Sheehan J, Dunahay T, Benemann J et al (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program-biodiesel from algae. National Renewable Energy LaboratoryGoogle Scholar
  163. 163.
    Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19:417–423Google Scholar
  164. 164.
    Shimogawara K, Fujiwara S, Grossman A et al (1998) High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148:1821–1828PubMedGoogle Scholar
  165. 165.
    Singh Y, Kumar H (1992) Lipid and hydrocarbon production by Botryococcus spp. Under nitrogen limitation and anaerobiosis. World J Microbiol Biotechnol 8:121–124Google Scholar
  166. 166.
    Soeder C (1980) Massive cultivation of microalgae: results and prospects. Hydrobiologia 72:197–209Google Scholar
  167. 167.
    Somerville C (2006) The billion-ton biofuels vision. Science 312:1277PubMedGoogle Scholar
  168. 168.
    Spolaore P, Joannis-Cassan C, Duran E et al (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96PubMedGoogle Scholar
  169. 169.
    Sriram G, Fulton DB, Iyer VV et al (2004) Quantification of compartmented metabolic fluxes in developing soybean embryos by employing biosynthetically directed fractional (13)C labeling, two-dimensional [(13)C, (1)H] nuclear magnetic resonance, and comprehensive isotopomer balancing. Plant Physiol 136:3043–3057PubMedGoogle Scholar
  170. 170.
    Stern N (2006) The Economics of Climate Change. HM Treasury, LondonGoogle Scholar
  171. 171.
    Stohs S, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radical Biol Med 18:321–336Google Scholar
  172. 172.
    Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41:207–234PubMedGoogle Scholar
  173. 173.
    Stumm S, Morgan J (1995) Aquatic Chemistry. New York, WileyGoogle Scholar
  174. 174.
    Sun Y, Yang Z, Gao X et al (2005) Expression of foreign genes in Dunaliella by electroporation. Mol Biotechnol 30:185–192PubMedGoogle Scholar
  175. 175.
    Taiz L, Zeiger E (2002) Plant Physiology. Sinauer Associates Inc., Sunderland, USAGoogle Scholar
  176. 176.
    Takagi M, Karseno, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226PubMedGoogle Scholar
  177. 177.
    Tanaka S, Suda Y, Ikeda K et al (2007) A novel gene with antisalt and anticadmium stress activities from a halotolerant marine green alga Chlamydomonas sp. W80. FEMS Microbiol Lett 271:48–52PubMedGoogle Scholar
  178. 178.
    The Economist (2006) Steady as she goes. in The Economist 379:65–67 (London)Google Scholar
  179. 179.
    Tredici MR (2003) Mass Production of Microalgae Photobioreactors. In: Richmond A (ed) Handbook of microalgal culture. Blackwell, USA, pp 178–214Google Scholar
  180. 180.
    Tripathi B, Gaur J (2004) Relationship between copper- and zinc-induced oxidative stress and proline accumulation in Scenedesmus sp. Planta 219:397–404PubMedGoogle Scholar
  181. 181.
    USDA (2007) US Department of Agriculture. www.usda.gov. Cited 6 Dec 2007
  182. 182.
    Vázquez-Duhalt R, Arredondo-Vega B (1991a) Haloadaptation of the green alga Botryococcus brauni. Phytochem 30:2919–2925Google Scholar
  183. 183.
    Vázquez-Duhalt R, Arredondo-Vega B (1991b) oil production from microalgae under saline stress. biomass for energy and industry. 5th E.C Conference. Vol.1: Policy, Environment, Production and Harvesting.Soeder, C., Massive cultivation of microalgae: results and prospects. Hydrobiologia, 1980. 72:pp. 197–209Google Scholar
  184. 184.
    VDI (2004) Vergärung organischer Stoffe. In:Verein Deutscher Ingenieure Guidelines 2004, Guideline VDI 4630, Düsseldorf, GermanyGoogle Scholar
  185. 185.
    Villas-Bôas SG, Kesson M, Nielsen J (2005) Biosynthesis of glyoxylate from glycine in Saccharomyces cerevisiae. FEMS Yeast Res 5:703–709PubMedGoogle Scholar
  186. 186.
    Vymazal J (1987) Toxicity and accumulation of cadmium with respect to algae and cyanobacteria: a review. Toxic Assess 2:387–415Google Scholar
  187. 187.
    Vymazal J (1990a) Toxicity and accumulation of lead with respect to algae and cyanobacteria: a review. Acta Hydrochim Hydrobiol 18:513–535Google Scholar
  188. 188.
    Vymazal J (1990b) Uptake of lead, chromium, cadmium and cobalt by Cladophora glomerata. Bull Environ Contam Toxicol 44:468–472PubMedGoogle Scholar
  189. 189.
    Walker TL, Purton S, Becker DK, Collet C (2005) Microalgae as bioreactors. Plant Cell Rep 24:629–641PubMedGoogle Scholar
  190. 190.
    Waltz E (2007) Will the current biofuels boom go bust? Nat Biotechnol 25:491–492PubMedGoogle Scholar
  191. 191.
    Wang T, Xue L, Hou W et al (2007) Increased expression of transgene in stably transformed cells of Dunaliella salina by matrix attachment regions. Appl Microbiol Biotechnol. 76:651–657PubMedGoogle Scholar
  192. 192.
    Weiland P (2003) Production and energetic use of biogas from energy crops and wastes in Germany. Appl Biochem Biotechnol 109:263–274PubMedGoogle Scholar
  193. 193.
    Weissman J, Goebel RP, Benemann JR (1988) Photobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnol Bioeng 31:336–344PubMedGoogle Scholar
  194. 194.
    Weissman JC, Tillett DM (1992) Aquatic Species Project Report; NREL/MP-232-4174. In: Brown LM, Sprague S (eds) National Renewable Energy Laboratory pp 41–58Google Scholar
  195. 195.
  196. 196.
    World Energy Council (2007) 2007 Survey of Energy Resources, executive summary. http://www.worldenergy.org/documents/ser2007_executive_summary.pdf. Cited 6 Dec 2007
  197. 197.
    Yang C, Hua Q, Shimizu K (2000) Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng J 6:87–102PubMedGoogle Scholar
  198. 198.
    Yang C, Hua Q, Shimizu K (2002) Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose. Metabolic Eng 4:202–216Google Scholar
  199. 199.
    Yoshimoto N, Sato T, Kondo Y (2005) Dynamic discrete model of flashing light effect in photosynthesis of microalgae. J Appl Phycol 17:207–214Google Scholar
  200. 200.
    Yoshimura K, Miyao K, Gaber A et al (2004) Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas Glutathione peroxidase in chloroplasts or cytosol. Plant J 37:21–33PubMedGoogle Scholar
  201. 201.
    Yun Y, Lee S, Park J et al (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biotechnol 69:451–455Google Scholar
  202. 202.
    Zaslavskaia L, Lippmeier J, Shih C et al (2001) Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 292:2073–2075PubMedGoogle Scholar
  203. 203.
    Zhila N, Kalacheva G, Volova T (2005) Effect of nitrogen limitation on the growth and lipid composition of the green alga Botryococcus braunii Kütz IPPAS H-252. Russian J Plant Physiol 52(3):31–319CrossRefGoogle Scholar
  204. 204.
    Zeiler KG, Heacox DA, Toon ST et al (1995) The use of microalgae for assimilation and utilization of carbon dioxide from fossil fuel-fired power plant flue gas. Energy Convers Manag 36:707–712Google Scholar
  205. 205.
    Riekhof WR, Sears BB, Benning C (2005) Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii: discovery of the betaine lipid synthase BTA1Cr. Eukaryot Cell 4:242–252PubMedGoogle Scholar
  206. 206.
    Dwivedi S, Tripathi RD, Rai UN, Srivastava S, Mishra S, Shukla MK, Gupta AK, Sinha S, Baghel VS, Gupta DK (2006) Dominance of algae in Ganga water polluted through fly-ash leaching: metal bioaccumulation potential of selected algal species. Bull Environ Contam Toxicol. 77:427–436PubMedGoogle Scholar
  207. 207.
    Sandau E, Sandau P, Pulz O (1996) Heavy metal sorption by microalgae. Acta Biotechnol. 16:227–235Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Peer M. Schenk
    • 1
  • Skye R. Thomas-Hall
    • 1
  • Evan Stephens
    • 1
    • 2
  • Ute C. Marx
    • 2
  • Jan H. Mussgnug
    • 3
  • Clemens Posten
    • 4
  • Olaf Kruse
    • 3
  • Ben Hankamer
    • 2
  1. 1.School of Integrative BiologyUniversity of QueenslandSt. LuciaAustralia
  2. 2.Institute for Molecular BioscienceUniversity of QueenslandSt. LuciaAustralia
  3. 3.Department of Biology, AlgaeBioTech GroupUniversity of BielefeldBielefeldGermany
  4. 4.Institute of Life Science Engineering, Bioprocess EngineeringUniversity of KarlsruheKarlsruheGermany

Personalised recommendations