BioEnergy Research

, Volume 1, Issue 1, pp 2–11

Pongamia pinnata: An Untapped Resource for the Biofuels Industry of the Future

  • Paul T. Scott
  • Lisette Pregelj
  • Ning Chen
  • Johanna S. Hadler
  • Michael A. Djordjevic
  • Peter M. Gresshoff
Article

Abstract

Pongamia pinnata (L.) Pierre is a fast-growing leguminous tree with the potential for high oil seed production and the added benefit of the ability to grow on marginal land. These properties support the suitability of this plant for large-scale vegetable oil production required by a sustainable biodiesel industry. The future success of P. pinnata as a sustainable source of feedstock for the biofuels industry is dependent on an extensive knowledge of the genetics, physiology and propagation of this legume. In particular, research should be targeted to maximizing plant growth as it relates to oil biosynthesis. This review assesses and integrates the biological, chemical and genetic attributes of the plant, providing the basis for future research into Pongamia’s role in an emerging industry.

Keywords

Legume Biodiesel Sustainability Pongamia 

References

  1. 1.
    Acharya L, Mukherjee AK, Panda PC (2004) Genome relationship among nine species of Millettieae (Leguminosae: Papilionoideae) based on random amplified polymorphic DNA (RAPD). Z Naturforsch C 59:868–873PubMedGoogle Scholar
  2. 2.
    Ahmad S, Ashraf SM, Naqvi F et al (2003) A polyesteramide from Pongamia glabra oil for biologically safe anticorrosive coating. Prog Org Coat 47:95–102CrossRefGoogle Scholar
  3. 3.
    Ahmad G, Yadav PP, Maurya R (2004) Furanoflavonoid glycosides from Pongamia pinnata fruits. Phytochemistry 65:921–924PubMedCrossRefGoogle Scholar
  4. 4.
    Alam S, Sarkar Z, Islam A (2004) Synthesis and studies of antibacterial activity of pongaglabol. J Chem Sci 116:29–32CrossRefGoogle Scholar
  5. 5.
    Ansari SA, Singh S, Rani A (2004) Inorganic salts influence IAA ionization and adventitious rhizogenesis in Pongamia pinnata. J Plant Physiol 161:117–120PubMedCrossRefGoogle Scholar
  6. 6.
    Arathi HS, Ganeshaiah KN, Shaanker RU et al (1999) Seed abortion in Pongamia pinnata (Fabaceae). Am J Bot 86:659–662PubMedCrossRefGoogle Scholar
  7. 7.
    Atchison E (1951) Studies in the Leguminosae VI. Chromosome numbers among tropical woody species. Am J Bot 38:538–546CrossRefGoogle Scholar
  8. 8.
    Azam MM, Waris A, Nahar NM (2005) Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenerg 29:293–302CrossRefGoogle Scholar
  9. 9.
    Bandivdekar AH, Moodbidri SB (2002) Spermicidal activity of seed oil of Pongamia glabra. Arch Androl 48:9–13PubMedCrossRefGoogle Scholar
  10. 10.
    Bassam BJ, Gresshoff PM (2007) Silver staining DNA in polyacrylamide gels. Nature Protocols 2:2649–2654PubMedCrossRefGoogle Scholar
  11. 11.
    Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) A fast and sensitive silver-staining for DNA in polyacrylamide gels. Anal Biochem 196:80–83PubMedCrossRefGoogle Scholar
  12. 12.
    Bottoms T (2000) Bama country—aboriginal homelands. In: McDonald G, Lane M (eds) Securing the wet tropics? Federation Press, Leichardt, NSW, pp 32–47Google Scholar
  13. 13.
    Brijesh S, Daswani PG, Tetali P et al (2006) Studies on Pongamia pinnata (L.) Pierre leaves: understanding the mechanism(s) of action in infectious diarrhea. J Zhejiang Univ Sci B 7:665–674PubMedCrossRefGoogle Scholar
  14. 14.
    Carcache-Blanco EJ, Kang Y-H, Park EJ et al (2003) Constituents of the stem bark of Pongamia pinnata with the potential to induce quinine reductase. J Nat Prod 66:1197–1202PubMedCrossRefGoogle Scholar
  15. 15.
    Caetano-Anollés G, Bassam BJ, Gresshoff PM (1991) DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Biotechnology 9:553–557PubMedCrossRefGoogle Scholar
  16. 16.
    Chandrasekaran D, Kadirvel R, Viswanathan K (1989) Nutritive value of pungam (Pongamia glabra Vent) cake for sheep. Anim Feed Sci Technol 22:321–325CrossRefGoogle Scholar
  17. 17.
    Chauhan D, Chauhan JS (2002) Flavonoid glycosides from Pongamia pinnata. Pharm Biol 40:171–174Google Scholar
  18. 18.
    Cribb AB, Cribb JW (1981) Useful wild plants in Australia. Collins, SydneyGoogle Scholar
  19. 19.
    Dayama OP (1985) Effect of sucrose on the growth, nodulation and nitrogen content of Pongamia pinnata. Nitrog Fix Tree Res Rep 3:9Google Scholar
  20. 20.
    De BK, Bhattacharyya DK (1999) Biodiesel from minor vegetable oils like karanja oil and nahor oil. Lipid Fett 101:404–406CrossRefGoogle Scholar
  21. 21.
    Elanchezhiyan M, Rajarajan S, Rajendran P et al (1993) Antiviral properties of the seed extract of an Indian medicinal plant, Pongamia pinnata Linn., against herpes simplex viruses: in-vitro studies on Vero cells. J Med Microbiol 38:262–264PubMedGoogle Scholar
  22. 22.
    George S, Vincent S (2005) Comparative efficacy of Annona squamosa Linn. and Pongamia glabra Vent. to Azadirachta indica A. Juss against mosquitoes. J Vector Borne Dis 42:159–163PubMedGoogle Scholar
  23. 23.
    Handa AK, Nandini D, Uma (2005) An alternative source of biofuel, seed germination trials of Pongamia pinnata. Int J For Usufructs Manag 6:75–80Google Scholar
  24. 24.
    Hill J, Nelson E, Tilman D et al (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A 103:11206–11210PubMedCrossRefGoogle Scholar
  25. 25.
    Hu J-M, Lavin M, Wojciechowski MF et al (2002) Phylogenetic analysis of nuclear ribosomal ITS/5.8S sequences in the tribe Millettieae (Fabaceae): Poecilanthe-Cyclolobium, the core Millettieae, and the Callerya group. Syst Bot 27:722–733Google Scholar
  26. 26.
    Imahara H, Minami E, Saka S (2006) Thermodynamic study on cloud point of biodiesel with its fatty acid composition. Fuel 85:1666–1670CrossRefGoogle Scholar
  27. 27.
    Jain KL, Dhingra HR (1991) Physical and biochemical characteristics of Parkonsonia aculeate L. and Pongamia pinnata Vent. flowers. J Apic Res 30:146–150Google Scholar
  28. 28.
    Kabir KE, Islam F, Khan AR (2001) Insecticidal effect of the petroleum ether fraction obtained from the leaf extract of Pongamia glabra Vent. on the American cockroach, Periplaneta americana (L.) (Dictyoptera: Blattidae). Int Pest Control 43:152–154Google Scholar
  29. 29.
    Karmee SJ, Chadha A (2005) Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresour Technol 96:1425–1429PubMedCrossRefGoogle Scholar
  30. 30.
    Karoshi VR, Hegde GV (2002) Vegetative propagation of Pongamia pinnata (L.) Pierre: hitherto a neglected species. Indian Forester 128:348–350Google Scholar
  31. 31.
    Khurma UR, Mangotra A (2004) Screening of some Leguminosae seeds for nematicidal activity. South Pac J Nat Sci 22:50–52Google Scholar
  32. 32.
    Konwar BK, Banerjee GC (1987) Deoiled karanja cake (Pongamia glabra Vent.) a new feed ingredient in cattle ration. Indian Vet J 64:500–504Google Scholar
  33. 33.
    Konwar BK, Banerjee GC, Mandal L (1984) Nutritive value of deoiled karanja cake (Pongamia glabra Vent.) in adult cattle. Indian J Anim Sci 54:489–490Google Scholar
  34. 34.
    Konwar BK, Banerjee GC, Mandal L (1987a) Effect of feeding deoiled karanja (Pongamia glabra Vent.) cake on the quantity and quality of milk in cross-bred cows. Indian Vet J 64:62–65Google Scholar
  35. 35.
    Konwar BK, Banerjee GC, Mandal L (1987b) Effect of feeding deoiled karanja (Pongamia glabra Vent.) cake on growing calves. Indian Vet J 64:399–402Google Scholar
  36. 36.
    Kumar V, Chandrashekar K, Sidhu OP (2006) Efficacy of karanjin and different extracts of Pongamia pinnata against selected insect pests. J Entomol Res 30:103–108Google Scholar
  37. 37.
    Lakshmi K, Rao GM, Joshi MA et al (1997) Studies on Pongamia pinnata (L.) Pierre—as an important source of forage to Apis species. J Palynol 33:137–148Google Scholar
  38. 38.
    Lavin M, Eshbaugh E, Hu J-M et al (1998) Monophyletic subgroups of the tribe Millettieae (Leguminosae) as revealed by phytochrome nucleotide sequence data. Am J Bot 85:412–433CrossRefGoogle Scholar
  39. 39.
    Li L, Li X, Shi C et al (2006) Pongamone A–E, five flavonoids from the stems of a mangrove plant, Pongamia pinnata. Phytochemistry 67:1347–1352PubMedCrossRefGoogle Scholar
  40. 40.
    Mandal B, Majumdar SG, Maity CR (1985) Protease inhibitors and in vitro protein digestibility of defatted seed cakes of akashmoni and karanja. J Am Oil Chem Soc 62:1124–1126CrossRefGoogle Scholar
  41. 41.
    Manonmani V, Vanagamudi K, Vinaya Rai RS (1996) Effect of seed size on seed germination and vigour in Pongamia pinnata. J Trop For Sci 9:1–5Google Scholar
  42. 42.
    Misra CM, Singh SL (1989) Coppice regeneration of Cassia siamea and Pongamia pinnata. Nitrogen Fixing Tree Res Rep 7:4Google Scholar
  43. 43.
    Muthu C, Ayyanar M, Raja N et al (2006) Medicinal plants used by traditional healers in Kancheepuram district of Tamil Nadu, India. J Ethnobiol Ethnomed 2:43–53PubMedCrossRefGoogle Scholar
  44. 44.
    Muthukumar T, Udaiyan K (2002) Growth and yield of cowpea as influenced by changes in arbuscular mycorrhizal in response to organic manuring. J Agron Crop Sci 188:123–132CrossRefGoogle Scholar
  45. 45.
    Nagaraj G, Mukta N (2004) Seed composition and fatty acid profile of some tree borne oilseeds. J Oilseed Res 21:117–120Google Scholar
  46. 46.
    Nagaveni HC, Vijayalakshmi (2003) Growth performance of sandal (Santalum album L.) with different host species. Sandalwood Research Newsletter Issue 18Google Scholar
  47. 47.
    Nair PRK (1993) An introduction to agroforestry. Kluwer Academic, DordrechtGoogle Scholar
  48. 48.
    Natanam R, Kadirvel R, Balagopal R (1989a) The effect of kernels of karanja (Pongamia glabra Vent) on growth and feed efficiency in broiler chicks to 4 weeks of age. Anim Feed Sci Technol 25:201–206CrossRefGoogle Scholar
  49. 49.
    Natanam R, Kadirvel R, Chandrasekaran D (1989b) Chemical composition of karanja (Pongamia glabra Vent [P. pinnata]) kernel and cake as animal feed. Indian J Anim Nutr 6:270–273Google Scholar
  50. 50.
    Natanam R, Kadirvel R, Ravi R (1989c) The toxic effects of karanja (Pongamia glabra Vent) oil and cake on growth and feed efficiency in broiler chicks. Anim Feed Sci Technol 27:95–100CrossRefGoogle Scholar
  51. 51.
    Natanam R, Kadirvel R, Viswanathan K (1989d) The effect of karanja (Pongamia glabra Vent) cake on the performance of white leghorn pullets. Anim Feed Sci Technol 27:89–93CrossRefGoogle Scholar
  52. 52.
    Palanisamy K, Ansari SA, Kumar P et al (1998) Adventitious rooting in shoot cuttings of Azadirachta indica and Pongamia pinnata. New For 16:81–88Google Scholar
  53. 53.
    Patel JS, Narayana GV (1937) Chromosome numbers in some economic flowering plants. Curr Sci 5:479Google Scholar
  54. 54.
    Patil SG, Hebbara M, Devarnavadagi SB (1996) Screening of multipurpose trees for saline vertisols and their bioameliorative effects. Ann Arid Zone 35:57–60Google Scholar
  55. 55.
    Pavanaram SK, Ramachandra Row L (1955) New flavones from Pongamia pinnata (L.) Merr.: identification of compound D. Nature 176:1177CrossRefGoogle Scholar
  56. 56.
    Pueppke SG, Broughton WJ (1999) Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol Plant Microbe Interact 12:293–318PubMedCrossRefGoogle Scholar
  57. 57.
    Raghavan RS, Arora CM (1958) Chromosome numbers in Indian medicinal plants II. Proc Indian Acad Sci B 47:352–358Google Scholar
  58. 58.
    Raheman H, Phadatare AG (2004) Diesel engine emissions and performance from blends of karanja methyl ester and diesel. Biomass Bioenerg 27:393–397CrossRefGoogle Scholar
  59. 59.
    Raju AJS, Rao SP (2006) Explosive pollen release and pollination as a function of nectar-feeding activity of certain bees in the biodiesel plant, Pongamia pinnata (L.) Pierre (Fabaceae). Curr Sci 90:960–967Google Scholar
  60. 60.
    Ramachandra Row L (1955) New flavones from Pongamia pinnata (L.) Merr. Aust J Sci Res (A) 5:754–759Google Scholar
  61. 61.
    Ramana DBV, Singh S, Solanki KR et al (2000) Nutritive evaluation of some nitrogen and non-nitrogen fixing multipurpose tree species. Anim Feed Sci Technol 88:103–111CrossRefGoogle Scholar
  62. 62.
    Ravi U, Singh P, Garg AK et al (2000) Performance of lambs fed expeller pressed and solvent extracted karanj (Pongamia pinnata) oil cake. Anim Feed Sci Technol 88:121–128CrossRefGoogle Scholar
  63. 63.
    Sarbhoy RK (1977) Cytogenetical studies in Pongamia pinnata (L.) Pierre. Cytologia 42:415–423Google Scholar
  64. 64.
    Sekar C, Vinaya Rai RS, Ramasamy C (1996) Role of minor forest products in tribal economy of India: a case study. J Trop For Sci 8:280–288Google Scholar
  65. 65.
    Shi S, Huang Y, Zeng K et al (2005) Molecular phylogenetic analysis of mangroves: independent evolutionary origins of vivipary and salt secretion. Mol Phylogenet Evol 34:159–166PubMedCrossRefGoogle Scholar
  66. 66.
    Siddiqui MH (1989) Nodulation study of a few legume tree species during seedling stage. Nitrog Fix Tree Res Rep 7:6Google Scholar
  67. 67.
    Simin K, Ali Z, Khaliq-Uz-Zaman SM et al (2002) Structure and biological activity of a new rotenoid from Pongamia pinnata. Nat Prod Res 16:351–357Google Scholar
  68. 68.
    Simonsen HT, Nordskjold JB, Smitt UW et al (2001) In vitro screening of Indian medicinal plants for antiplasmodial activity. J Ethnopharmacol 74:195–204PubMedCrossRefGoogle Scholar
  69. 69.
    Singh KP, Dhakre G, Chauhan SVS (2005) Effect of mechanical and chemical treatments on seed germination in Pongamia glabra L. Seed Res 33:169–171Google Scholar
  70. 70.
    Singh P, Sastry VRB, Garg AK et al (2006) Effect of long term feeding of expeller pressed and solvent extracted karanj (Pongamia pinnata) seed cake on the performance of lambs. Anim Feed Sci Technol 126:157–167CrossRefGoogle Scholar
  71. 71.
    Srinivas B, Rao SR (2006) Optimization of regeneration in Pongamia pinnata (L.) Pierre—a potential biodiesel plant using Taguchi approach. Paper presented at In Vitro Biology Meeting, Minneapolis, 3–7 June 2006Google Scholar
  72. 72.
    Srinivasan K, Muruganandan S, Lal J et al (2001) Evaluation of anti-inflammatory activity of Pongamia pinnata leaves in rats. J Ethnopharmacol 78:151–157PubMedCrossRefGoogle Scholar
  73. 73.
    Srinivasan K, Muruganandan S, Lal J et al (2003) Antinociceptive and antipyretic activities of Pongamia pinnata leaves. Phytother Res 17:259–264PubMedCrossRefGoogle Scholar
  74. 74.
    Subbarao NS, Yadav D, Padmanabha A et al (1990) Nodule haustoria and microbial features of Cajanus and Pongamia parasitized by sandal (sandal wood). Plant Soil 128:249–256CrossRefGoogle Scholar
  75. 75.
    Sujatha K, Hazra S (2007) Micropropagation of mature Pongamia pinnata Pierre. In Vitro Cell Dev Biol Plant 43:608–613CrossRefGoogle Scholar
  76. 76.
    Thelen JJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 4:12–21PubMedCrossRefGoogle Scholar
  77. 77.
    Thomson DF (1936) Notes on some bone and stone implements from north Queensland. J R Anthropol Soc GB Ire 66:71–74Google Scholar
  78. 78.
    Tomar OS, Gupta RK (1985) Performance of some forest tree species in saline soils under shallow and saline water-table conditions. Plant Soil 87:329–335CrossRefGoogle Scholar
  79. 79.
    Uddin Q, Parveen N, Khan NU et al (2003) Antifilarial potential of the fruits and leaves extracts of Pongamia pinnata on cattle filarial parasite Setaria cervi. Phytother Res 17:1104–1107PubMedCrossRefGoogle Scholar
  80. 80.
    Yadav PP, Ahmad G, Maurya R (2004) Furanoflavonoids from Pongamia pinnata fruits. Phytochemistry 65:439–443PubMedCrossRefGoogle Scholar
  81. 81.
    Yadav YS, Siddiqui AU, Parihar A (2005) Management of root-knot nematode Meloidogyne incognita infesting gram through oil cakes. J Phytological Res 18:263–264Google Scholar
  82. 82.
    Yin H, Zhang S, Wu J et al (2006) Pongaflavonol: a prenylated flavonoid from Pongamia pinnata with a modified ring A. Molecules 11:786–791PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Paul T. Scott
    • 1
  • Lisette Pregelj
    • 1
  • Ning Chen
    • 1
  • Johanna S. Hadler
    • 1
  • Michael A. Djordjevic
    • 2
  • Peter M. Gresshoff
    • 1
  1. 1.ARC Centre of Excellence for Integrative Legume ResearchThe University of QueenslandBrisbaneAustralia
  2. 2.ARC Centre of Excellence for Integrative Legume Research, Research School of Biological SciencesThe Australian National UniversityCanberraAustralia

Personalised recommendations