Journal of Chemical Biology

, Volume 10, Issue 1, pp 1–9 | Cite as

Is phosphatidylglycerol essential for terrestrial life?

  • Samuel Furse
Part of the following topical collections:
  1. Topical Collection on Heart Failure


Lipids are of increasing importance in understanding biological systems. Lipids carrying an anionic charge are noted in particular for their electrostatic interactions with both proteins and divalent cations. However, the biological, analytical, chemical and biophysical data of such species are rarely considered together, limiting our ability to assess the true role of such lipids in vivo. In this review, evidence from a range of studies about the lipid phosphatidylglycerol is considered. This evidence supports the conclusions that this lipid is ubiquitous in living systems and generally of low abundance but probably fundamental for terrestrial life. Possible reasons for this are discussed and further questions posed.


Lipid Phosphatidylglycerol Membrane Anionic Signal 


  1. 1.
    Benson AA, Maruo B (1958) Plant phospholipids I. Identification of the phosphatidyl glycerols. Biochim Biophys Acta 27:189–195. doi: 10.1016/0006-3002(58)90308-1 CrossRefGoogle Scholar
  2. 2.
    Benson AA, Miyano M (1961) Phosphatidylglycerol and sulpholipid of plants—asymmetry of glycerol moiety. Biochem J 81:P31-&Google Scholar
  3. 3.
    Haverkate F, Van Deenen LLM (1963) Isolation of phosphatidylglycerol from spinach leaves. Biochem J 88:P42-&Google Scholar
  4. 4.
    Ames GF (1968) Lipids of salmonella typhimurium and Escherichia coli: structure and metabolism. J Bacteriol 95:833–843Google Scholar
  5. 5.
    Ward, JB, Perkins, HR (1968) The chemical composition of the membranes of protoplasts and L-forms of Staphylococcus 106(2). doi: 10.1042/bj1060391
  6. 6.
    Schwarz HP (1967) Occurrence of phosphatidylglycerol and cardiolipin in blood from abstracts of papers from scientific sessions: 19th National Meeting of the American Association of Clinical Chemists. Clin Chem 13:709–716Google Scholar
  7. 7.
    Stanacev NZ, Isaac DC, Brookes KB (1968) The enzymatic synthesis of phosphatidylglycerol in sheep brain. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 152:806–808. doi: 10.1016/0005-2760(68)90133-1 CrossRefGoogle Scholar
  8. 8.
    Kiyasu JY, Pieringer RA, Paulus H, Kennedy EP (1963) The biosynthesis of phosphatidylglycerol. J Biol Chem 238:2293–2298Google Scholar
  9. 9.
    Saunders RM, Schwarz HP (1966) Synthesis of phosphatidylglycerol and diphosphatidylglycerol1,2. J Am Chem Soc 88:3844–3847. doi: 10.1021/ja00968a031 CrossRefGoogle Scholar
  10. 10.
    Gould RM, Lennarz WJ (1967) Biosynthesis of aminoacyl derivatives of phosphatidylglycerol. Biochem Biophys Res Commun 26:510–515. doi: 10.1016/0006-291X(67)90578-5 CrossRefGoogle Scholar
  11. 11.
    Houtsmuller UMT, Van Deenen LLM (1964) On the accumulation of amino acid derivates of phosphatidylglycerol in bacteria. Biochimica et Biophysica Acta (BBA) - Specialized Section on Lipids and Related Subjects 84:96–98. doi: 10.1016/0926-6542(64)90106-4 CrossRefGoogle Scholar
  12. 12.
    Quehenberger O et al (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res 51:3299–3305. doi: 10.1194/jlr.M009449 CrossRefGoogle Scholar
  13. 13.
    van Meer G, de Kroon AIPM (2011) Lipid map of the mammalian cell. J Cell Sci 124:5–8CrossRefGoogle Scholar
  14. 14.
    van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124CrossRefGoogle Scholar
  15. 15.
    Kanoh H, Kondoh H, Ono T (1983) Diacylglycerol kinase from pig brain. Purification and phospholipid dependencies. J Biol Chem 258:1767–1774Google Scholar
  16. 16.
    Asther M, Record E, Cabane B, Vidor E, Hartmann H, Sigoillot J-C, Asther M (2000) Design of a process for improvement of phosphatidylglycerol-phosphatidylinositol transfer protein recovery from Aspergillus oryzae. Process Biochem 35:717–723. doi: 10.1016/S0032-9592(99)00128-4 CrossRefGoogle Scholar
  17. 17.
    Record E, Asther M, Moukha S, Marion D, Burlat V, Ruel K, Asther M (1998) Localization of a phosphatidylglycerol/ phosphatidylinositol transfer protein in Aspergillus oryzae. Can J Microbiol 44:945–953. doi: 10.1139/w98-092 CrossRefGoogle Scholar
  18. 18.
    Hallman M, Kulovich M, Kirkpatrick E, Sugarman RG, Gluck L (1976) Phosphatidylinositol and phosphatidylglycerol in amniotic fluid: indices of lung maturity. American Journal of Obstetrics & Gynecology 125:613–617CrossRefGoogle Scholar
  19. 19.
    Hallman M, Spragg R, Harrell JH, Moser KM, Gluck L (1982) Evidence of lung surfactant abnormality in respiratory failure. Study of bronchoalveolar lavage phospholipids, surface activity, phospholipase activity, and plasma myoinositol. J Clin Invest 70:673–683. doi: 10.1172/jci110662 CrossRefGoogle Scholar
  20. 20.
    Veldhuizen R, Nag K, Orgeig S, Possmayer F (1998) The role of lipids in pulmonary surfactant. Biochim Biophys Acta (BBA) - Mol Basis Dis 1408:90–108. doi: 10.1016/S0925-4439(98)00061-1 CrossRefGoogle Scholar
  21. 21.
    Alley SH, Ces O, Barahona M, Templer RH (2008) X-ray diffraction measurement of the monolayer spontaneous curvature of dioleoylphosphatidylglycerol. Chem Phys Lipids 154:64–67CrossRefGoogle Scholar
  22. 22.
    Cullis PR, de Kruijff B (1976) 31P NMR studies of unsonicated aqueous dispersions of neutral and acidic phospholipids. Effects of phase transitions, p2H and divalent cations on the motion in the phosphate region of the polar headgroup. Biochim Biophys Acta 436:523–540. doi: 10.1016/0005-2736(76)90438-7 CrossRefGoogle Scholar
  23. 23.
    Lau A, McLaughlin A, McLaughlin S (1981) The adsorption of divalent cations to phosphatidylglycerol bilayer membranes. Biochim Biophys Acta Biomembr 645:279–292. doi: 10.1016/0005-2736(81)90199-1 CrossRefGoogle Scholar
  24. 24.
    Toko K, Yamafuji K (1980) Influence of monovalent and divalent cations on the surface area of phosphatidylglycerol monolayers. Chem Phys Lipids 26:79–99. doi: 10.1016/0009-3084(80)90013-4 CrossRefGoogle Scholar
  25. 25.
    Verkleij AJ, De Kruyff B, Ververgaert PHJT, Tocanne JF, Van Deenen LLM (1974) The influence of pH, Ca2+ and protein on the thermotropic behaviour of the negatively charged phospholipid, phosphatidylglycerol. Biochim Biophys Acta Biomembr 339:432–437. doi: 10.1016/0005-2736(74)90171-0 CrossRefGoogle Scholar
  26. 26.
    Furse S, Wienk H, Boelens R, de Kroon AIPM, Killian JA (2015) E. coli MG1655 modulates its phospholipid composition through the cell cycle. FEBS Lett 589:2726–2730. doi: 10.1016/j.febslet.2015.07.043 CrossRefGoogle Scholar
  27. 27.
    Kooijman EE, Burger KNJ (2009) Biophysics and function of phosphatidic acid: a molecular perspective. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1791:881–888. doi: 10.1016/j.bbalip.2009.04.001 CrossRefGoogle Scholar
  28. 28.
    Kooijman EE, Chupin V, de Kruijff B, Burger KNJ (2003) Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 4:162–174. doi: 10.1034/j.1600-0854.2003.00086.x CrossRefGoogle Scholar
  29. 29.
    Kooijman EE, Chupin V, Fuller NL, Kozlov MM, de Kruijff B, Burger KNJ, Rand PR (2005) Spontaneous curvature of phosphatidic acid and lysophosphatidic acid. Biochemistry 44:2097–2102. doi: 10.1021/bi0478502 CrossRefGoogle Scholar
  30. 30.
    Hallman M, Gluck L (1975) Phosphatidylglycerol in lung surfactant II. Subcellular distribution and mechanism of biosynthesis in vitro. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 409:172–191. doi: 10.1016/0005-2760(75)90152-6 CrossRefGoogle Scholar
  31. 31.
    Harwood JL, Desai R, Hext P, Tetley T, Richards R (1975) Characterization of pulmonary surfactant from ox, rabbit, rat and sheep 151(3). doi: 10.1042/bj1510707Google Scholar
  32. 32.
    Rooney SA, Wai-Lee TS, Gobran L, Motoyama EK (1976b) Phospholipid content, composition and biosynthesis during fetal lung development in the rabbit. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 431:447–458. doi: 10.1016/0005-2760(76)90211-3 CrossRefGoogle Scholar
  33. 33.
    Atilla-Gokcumen GE et al (2014) Dividing cells regulate their lipid composition and localization. Cell 156:428–439. doi: 10.1016/j.cell.2013.12.015 CrossRefGoogle Scholar
  34. 34.
    Dennis EA et al (2010) A mouse macrophage lipidome. J Biol Chem 285:39976–39985. doi: 10.1074/jbc.M110.182915 CrossRefGoogle Scholar
  35. 35.
    Sampaio JL, Gerl MJ, Klose C, Ejsing CS, Beug H, Simons K, Shevchenko A (2011) Membrane lipidome of an epithelial cell line. Proc Natl Acad Sci 108:1903–1907. doi: 10.1073/pnas.1019267108 CrossRefGoogle Scholar
  36. 36.
    Postle AD, Gonzales LW, Bernhard W, Clark GT, Godinez MH, Godinez RI, Ballard PL (2006) Lipidomics of cellular and secreted phospholipids from differentiated human fetal type II alveolar epithelial cells. J Lipid Res 47:1322–1331. doi: 10.1194/jlr.M600054-JLR200 CrossRefGoogle Scholar
  37. 37.
    Hemming JM et al (2015) Environmental pollutant ozone causes damage to lung surfactant protein B (SP-B). Biochemistry 54:5185–5197. doi: 10.1021/acs.biochem.5b00308 CrossRefGoogle Scholar
  38. 38.
    Bustos R, Kulovich MV, Gluck L, Gabbe SG, Evertson L, Vargas C, Lowenberg E (1979) Significance of phosphatidylglycerol in amniotic fluid in complicated pregnancies. American Journal of Obstetrics & Gynecology 133:899–903CrossRefGoogle Scholar
  39. 39.
    Skjáraasen J, Stray-Pedersen S (1979) Amniotic fluid phosphatidylinositol and phosphatidylglycerol: I. Normal pregnancies. Acta Obstet Gynecol Scand 58:225–229. doi: 10.3109/00016347909154038 CrossRefGoogle Scholar
  40. 40.
    Rooney SA, Gobran L, Gross I, Wai-Lee TS, Nardone LL, Motoyama EK (1976a) Studies on pulmonary surfactant: effects of cortisol administration to fetal rabbits on lung phospholipid content, composition and biosynthesis. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 450:121–130. doi: 10.1016/0005-2760(76)90083-7 CrossRefGoogle Scholar
  41. 41.
    Preuß S et al (2014) 18:1/18:1-dioleoyl-phosphatidylglycerol prevents alveolar epithelial apoptosis and profibrotic stimulus in a neonatal piglet model of acute respiratory distress syndrome. Pulm Pharmacol Ther 28:25–34. doi: 10.1016/j.pupt.2013.10.002 CrossRefGoogle Scholar
  42. 42.
    Waite M, Roddick V, Thornburg T, King L, Cochran F (1987) Conversion of phosphatidylglycerol to lyso(bis)phosphatidic acid by alveolar macrophages. FASEB J 1:318–325Google Scholar
  43. 43.
    Numata M, Chu HW, Dakhama A, Voelker DR (2010) Pulmonary surfactant phosphatidylglycerol inhibits respiratory syncytial virus–induced inflammation and infection. Proc Natl Acad Sci 107:320–325. doi: 10.1073/pnas.0909361107 CrossRefGoogle Scholar
  44. 44.
    Numata M, Kandasamy P, Nagashima Y, Posey J, Hartshorn K, Woodland D, Voelker DR (2012) Phosphatidylglycerol suppresses influenza a virus infection. Am J Respir Cell Mol Biol 46:479–487. doi: 10.1165/rcmb.2011-0194OC CrossRefGoogle Scholar
  45. 45.
    Numata M et al (2013) Phosphatidylglycerol provides short-term prophylaxis against respiratory syncytial virus infection. J Lipid Res 54:2133–2143. doi: 10.1194/jlr.M037077 CrossRefGoogle Scholar
  46. 46.
    Lambers DS, Brady K, Leist PA, Setser C, Helmchen R (1995) Ability of normal vaginal flora to produce detectable phosphatidylglycerol in amniotic fluid in vitro. Obstet Gynecol 85:651–655. doi: 10.1016/0029-7844(95)00032-M CrossRefGoogle Scholar
  47. 47.
    Pastorek Ii JG, Letellier RL, Gebbia K (1988) Production of a phosphatidylglycerol-like substance by genital flora bacteria. Am J Obstet Gynecol 159:199–202. doi: 10.1016/0002-9378(88)90521-2 CrossRefGoogle Scholar
  48. 48.
    Magnuson K, Jackowski S, Rock CO, Cronan JE (1993) Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Rev 57:522–542Google Scholar
  49. 49.
    Sahu S, Lynn WS (1977) Lipid composition of airway secretions from patients with asthma and patients with cystic fibrosis. Am Rev Respir Dis 115:233–239. doi: 10.1164/arrd.1977.115.2.233 Google Scholar
  50. 50.
    Dombrowsky H, Clark GT, Rau GA, Bernhard W, Postle AD (2003) Molecular species compositions of lung and pancreas phospholipids in the cftr(tm1HGU/tm1HGU) cystic fibrosis mouse. Pediatr Res 53:447–454. doi: 10.1203/01.pdr.0000049937.30305.8a CrossRefGoogle Scholar
  51. 51.
    Cunningham MD, Desai NS, Thompson SA, Greene JM (1978) Amniotic fluid phosphatidylglycerol in diabetic pregnancies. American Journal of Obstetrics & Gynecology 131:719–724CrossRefGoogle Scholar
  52. 52.
    Skjaeraasen J, Stray-Pedersen S (1979) Amniotic fluid phosphatidylinositol and phosphatidylglycerol. Acta Obstet Gynecol Scand 58:433–438. doi: 10.3109/00016347909154062 CrossRefGoogle Scholar
  53. 53.
    Gohil JT, Patel PK, Gupta P (2011) Estimation of lipid profile in subjects of preeclampsia. Journal of Obstetrics and Gynaecology of India 61:399–403. doi: 10.1007/s13224-011-0057-0 CrossRefGoogle Scholar
  54. 54.
    Lima VJ, Andrade CRD, Ruschi GE, Sass N (2011) Serum lipid levels in pregnancies complicated by preeclampsia. Sao Paulo Medical Journal 129:73–76CrossRefGoogle Scholar
  55. 55.
    Poranena AK, Ekblad U, Uotila P, Ahotupa M (1996) Lipid peroxidation and antioxidants in normal and pre-eclamptic pregnancies. Placenta 17:401–405. doi: 10.1016/S0143-4004(96)90021-1 CrossRefGoogle Scholar
  56. 56.
    Wadhwani N, Narang A, Mehendale S, Wagh G, Gupte S, Joshi S (2016) Reduced maternal erythrocyte long chain polyunsaturated fatty acids exist in early pregnancy in preeclampsia. Lipids 51:85–94. doi: 10.1007/s11745-015-4098-5 CrossRefGoogle Scholar
  57. 57.
    Wang Y, Walsh SW (1998) Placental mitochondria as a source of oxidative stress in pre-eclampsia. Placenta 19:581–586. doi: 10.1016/S0143-4004(98)90018-2 CrossRefGoogle Scholar
  58. 58.
    Himeno H, Shimokawa N, Komura S, Andelman D, Hamada T, Takagi M (2014) Charge-induced phase separation in lipid membranes. Soft Matter 10:7959–7967. doi: 10.1039/c4sm01089b CrossRefGoogle Scholar
  59. 59.
    Findlay EJ, Barton PG (1978) Phase behavior of synthetic phosphatidylglycerols and binary mixtures with phosphatidylcholines in the presence and absence of calcium ions. Biochemistry 17:2400–2405. doi: 10.1021/bi00605a023 CrossRefGoogle Scholar
  60. 60.
    Zhang Y-P, Lewis RNAH, McElhaney RN (1997) Calorimetric and spectroscopic studies of the thermotropic phase behavior of the n-saturated 1,2-Diacylphosphatidylglycerols. Biophys J 72:779–793CrossRefGoogle Scholar
  61. 61.
    Van Dijck PWM, Ververgaert PHJT, Verkleij AJ, Van Deenen LLM, De Gier J (1975) Influence of Ca2+ and Mg2+ on the thermotropic behaviour and permeability properties of liposomes prepared from dimyristoyl phosphatidylglycerol and mixtures of dimyristoyl phosphatidylglycerol and dimyristoyl phosphatidylcholine. Biochim Biophys Acta Biomembr 406:465–478. doi: 10.1016/0005-2736(75)90025-5 CrossRefGoogle Scholar
  62. 62.
    Ververgaert JT, De Kruyff B, Verkleij AJ, Tocanne JF, Van Deenen LLM (1975) Calorimetric and freeze-etch study of the influence of Mg2+ on the thermotropic behaviour of phosphatidylglycerol. Chem Phys Lipids 14:97–101. doi: 10.1016/0009-3084(75)90021-3 CrossRefGoogle Scholar
  63. 63.
    Borochov N, Wachtel EJ, Bach D (1995) Phase behaviour of mixtures of cholesterol and saturated phosphatidylglycerols. Chem Phys Lipids 76:85–92. doi: 10.1016/0009-3084(94)02411-w CrossRefGoogle Scholar
  64. 64.
    Egberts J, Beintema-Dubbeldam A, de Boers A (1987) Phosphatidylinositol and not phosphatidylglycerol is the important minor phospholipid in rhesus-monkey surfactant. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 919:90–92. doi: 10.1016/0005-2760(87)90221-9 CrossRefGoogle Scholar
  65. 65.
    Hirai H, Natori S, Sekimizu K (1992) Reversal by phosphatidylglycerol and cardiolipin of inhibition of transcription and replication by histones in vitro. Arch Biochem Biophys 298:458–463. doi: 10.1016/0003-9861(92)90435-Y CrossRefGoogle Scholar
  66. 66.
    Murray NR, Fields AP (1998) Phosphatidylglycerol is a physiologic activator of nuclear protein kinase C. J Biol Chem 273:11514–11520 doi: 10.1074/jbc.273.19.11514
  67. 67.
    Lekka M, Tokumura A, Tsuji H, Hanahan DJ (1993) Isolation of a phospholipid inhibitor of platelet activating factor-induced activity from perfused rat liver: identification as phosphatidylglycerol. Arch Biochem Biophys 302:380–384. doi: 10.1006/abbi.1993.1227 CrossRefGoogle Scholar
  68. 68.
    Wirtz KWA, Geurts Van Kessel WSM, Kamp HH, Demel RA (1976) The protein-mediated transfer of phosphatidylcholine between membranes. Eur J Biochem 61:515–523. doi: 10.1111/j.1432-1033.1976.tb10046.x CrossRefGoogle Scholar
  69. 69.
    Bamford DH, Romantschuk M, Somerharju PJ (1987) Membrane fusion in prokaryotes: bacteriophage phi 6 membrane fuses with the pseudomonas syringae outer membrane. EMBO J 6:1467–1473Google Scholar
  70. 70.
    Laurinavičius S, Käkelä R, Bamford DH, Somerharju P (2004) The origin of phospholipids of the enveloped bacteriophage phi6. Virology 326:182–190. doi: 10.1016/j.virol.2004.05.021 CrossRefGoogle Scholar
  71. 71.
    Sands JA, Lowlicht RA (1976) Temporal origin of viral phospholipids of the enveloped bacteriophage ϕ6. Can J Microbiol 22:154–158. doi: 10.1139/m76-021 CrossRefGoogle Scholar
  72. 72.
    Huterer S, Wherrett JR, Poulos A, Callahan JW (1983) Deficiency of phospholipase-C acting on phosphatidylglycerol in Niemann-Pick disease. Neurology 33:67–73CrossRefGoogle Scholar
  73. 73.
    Yoda E et al. (2014) Group VIB calcium-independent phospholipase A2(iPLA2γ) regulates platelet activation, hemostasis and thrombosis in mice. PLoS One 9:e109409. doi: 10.1371/journal.pone.0109409 CrossRefGoogle Scholar
  74. 74.
    Hague CV, Postle AD, Attard GS, Dymond MK (2013) Cell cycle dependent changes in membrane stored curvature elastic energy: evidence from lipidomic studies. Faraday Discuss 161:481–497. doi: 10.1039/c2fd20078c CrossRefGoogle Scholar
  75. 75.
    Xie D, Seremwe M, Edwards JG, Podolsky R, Bollag WB (2014) Distinct effects of different phosphatidylglycerol species on mouse keratinocyte proliferation. PLoS One 9:e107119. doi: 10.1371/journal.pone.0107119 CrossRefGoogle Scholar
  76. 76.
    Bollag WB, Xie D, Zheng X, Zhong X (2007) A potential role for the phospholipase D2-aquaporin-3 signaling module in early keratinocyte differentiation: production of a phosphatidylglycerol signaling lipid. J Invest Dermatol 127:2823–2831CrossRefGoogle Scholar
  77. 77.
    Furse S et al (2013) The lipidome and proteome of oil bodies from Helianthus annuus (common sunflower). J Chem Biol 6:63–76. doi: 10.1007/s12154-012-0090-1 CrossRefGoogle Scholar
  78. 78.
    Rochester CP, Kjellbom P, Larsson C (1987a) Lipid composition of plasma membranes from barley leaves and roots, spinach leaves and cauliflower inflorescences. Physiol Plant 71:257–263. doi: 10.1111/j.1399-3054.1987.tb04339.x CrossRefGoogle Scholar
  79. 79.
    Rochester CP, Kjellbom P, Andersson B, Larsson C (1987b) Lipid composition of plasma membranes isolated from light-grown barley (Hordeum vulgare) leaves: identification of cerebroside as a major component. Arch Biochem Biophys 255:385–391. doi: 10.1016/0003-9861(87)90406-1 CrossRefGoogle Scholar
  80. 80.
    Roughan PG, Batt RD (1969) The glycerolipid composition of leaves. Phytochemistry 8:363–369. doi: 10.1016/S0031-9422(00)85432-1 CrossRefGoogle Scholar
  81. 81.
    Fritz M et al (2007) Channeling of eukaryotic Diacylglycerol into the biosynthesis of plastidial phosphatidylglycerol. J Biol Chem 282:4613–4625. doi: 10.1074/jbc.M606295200 CrossRefGoogle Scholar
  82. 82.
    Beck JC, Levine RP (1977) Synthesis of chloroplast membrane lipids and chlorophyll in synchronous cultures of Chlamydomonas Reinhardi. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 489:360–369. doi: 10.1016/0005-2760(77)90156-4 CrossRefGoogle Scholar
  83. 83.
    Tanoue R, Kobayashi M, Katayama K, Nagata N, Wada H (2014) Phosphatidylglycerol biosynthesis is required for the development of embryos and normal membrane structures of chloroplasts and mitochondria in Arabidopsis. FEBS Lett 588:1680–1685. doi: 10.1016/j.febslet.2014.03.010 CrossRefGoogle Scholar
  84. 84.
    Wada H, Murata N (2007) The essential role of phosphatidylglycerol in photosynthesis. Photosynth Res 92:205–215. doi: 10.1007/s11120-007-9203-z CrossRefGoogle Scholar
  85. 85.
    Hagio M, Sakurai I, Sato S, Kato T, Tabata S, Wada H (2002) Phosphatidylglycerol is essential for the development of thylakoid membranes in Arabidopsis thaliana. Plant Cell Physiol 43:1456–1464. doi: 10.1093/pcp/pcf185 CrossRefGoogle Scholar
  86. 86.
    Bailey DS, Northcote DH (1976) Phospholipid composition of the plasma membrane of the green alga, Hydrodictyon Africanum. Biochem J 156:295–300. doi: 10.1042/bj1560295 CrossRefGoogle Scholar
  87. 87.
    Xu Y-N, Wang Z-N, Jiang G-Z, Li L-B, Kuang T-Y (2003) Effect of various temperatures on phosphatidylglycerol biosynthesis in thylakoid membranes. Physiol Plant 118:57–63. doi: 10.1034/j.1399-3054.2003.00067.x CrossRefGoogle Scholar
  88. 88.
    Murata N, Yamaya J (1984) Temperature-dependent phase behavior of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants. Plant Physiol 74:1016–1024. doi: 10.1104/pp.74.4.1016 CrossRefGoogle Scholar
  89. 89.
    Jarret RL, Gawel N (1991) Chemical and environmental growth regulation of sweetpotato (Ipomoea batatas (L.) lam.) in vitro. Plant Cell Tissue Organ Cult 25:153–159. doi: 10.1007/bf00042187 Google Scholar
  90. 90.
    Spence JA, Humphries EC (1972) Effect of moisture supply, root temperature, and growth regulators on photosynthesis of isolated rooted leaves of sweet potato (Ipomoea batatas). Ann Bot 36:115–121Google Scholar
  91. 91.
    Boese SR, Huner NPA (1990) Effect of growth temperature and temperature shifts on spinach leaf morphology and photosynthesis. Plant Physiol 94:1830–1836CrossRefGoogle Scholar
  92. 92.
    Yang L, Su WA (1994) Relationship between thermal phase-transition of phosphatidylglycerol and cold resistance of rice. Chin Sci Bull 39:2009–2013Google Scholar
  93. 93.
    Sun X-L, Yang S, Wang L-Y, Zhang Q-Y, Zhao S-J, Meng Q-W (2011) The unsaturation of phosphatidylglycerol in thylakoid membrane alleviates PSII photoinhibition under chilling stress Plant Cell Rep 30:1939–1947. doi: 10.1007/s00299-011-1102-2
  94. 94.
    Tuquet C, Guillot-Salomon T, De Lubac M, Signol M (1977) Granum formation and the presence of phosphatidyl-glycerol containing trans-Δ3-hexadecenoic acid. Plant Science Letters 8:59–64. doi: 10.1016/0304-4211(77)90172-9 CrossRefGoogle Scholar
  95. 95.
    Duval JC, Tremolieres A, Dubacq JP (1979) The possible role of transhexadecenoic acid and phosphatidylglycerol in light reactions of photosynthesis: the photochemistry and fluorescence properties of young pea leaf chloroplasts treated by phospholipase A2. FEBS Lett 106:414–418. doi: 10.1016/0014-5793(79)80544-X CrossRefGoogle Scholar
  96. 96.
    Koynova R, Caffrey M (1994) Phases and phase transitions of the hydrated phosphatidylethanolamines. Chem Phys Lipids 69:1–34CrossRefGoogle Scholar
  97. 97.
    Koynova R, Caffrey M (1998) Phases and phase transitions of the phosphatidylcholines—reviews on biomembranes. Biochimica et Biophysica Acta (BBA) 1376:91–145. doi: 10.1016/S0304-4157(98)00006-9 CrossRefGoogle Scholar
  98. 98.
    Bishop DG, Kenrick JR (1987) Thermal properties of 1-hexadecanoyl-2-trans-3-hexadecenoyl phosphatidylglycerol. Phytochemistry 26:3065–3067. doi: 10.1016/S0031-9422(00)84594-X CrossRefGoogle Scholar
  99. 99.
    Bolton P, Harwood J (1978) Lipid metabolism in green leaves of developing monocotyledons. Planta 139:267–272. doi: 10.1007/bf00388640 CrossRefGoogle Scholar
  100. 100.
    Ballesta JPG, Garcia CLD, Schaechter M (1973) Turnover of phosphatidylglycerol in Escherichia coli. J Bacteriol 116:210–214Google Scholar
  101. 101.
    Dowhan W (2013) A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1831:471–494. doi: 10.1016/j.bbalip.2012.08.007 CrossRefGoogle Scholar
  102. 102.
    Kuhn S, Slavetinsky CJ, Peschel A (2015) Synthesis and function of phospholipids in Staphylococcus aureus. International Journal of Medical Microbiology 305:196–202. doi: 10.1016/j.ijmm.2014.12.016 CrossRefGoogle Scholar
  103. 103.
    Shibuya I (1992) Metabolic regulation and biological functions of phospholipids in Escherichia coli. Prog Lipid Res 31:245–299. doi: 10.1016/0163-7827(92)90010-G CrossRefGoogle Scholar
  104. 104.
    Furse S, Jakubec M, Williams HE, Rise F, Rees CED, Halskau O (2016b) Listeria innocua NCTC 11288 modulates its phospholipid profile and membrane properties as a function of the cell cycle. In preparationGoogle Scholar
  105. 105.
    Oliver JD, Colwell RR (1973) Extractable lipids of gram-negative marine bacteria: phospholipid composition. J Bacteriol 114:897–908Google Scholar
  106. 106.
    Raetz CRH (1986) Molecular genetics of membrane phospholipid synthesis. Annu Rev Genet 20:253–291. doi: 10.1146/ CrossRefGoogle Scholar
  107. 107.
    Mileykovskaya E, Dowhan W, Birke RL, Zheng D, Lutterodt L, Haines TH (2001) Cardiolipin binds nonyl acridine orange by aggregating the dye at exposed hydrophobic domains on bilayer surfaces. FEBS Lett 507:187–190. doi: 10.1016/S0014-5793(01)02948-9 CrossRefGoogle Scholar
  108. 108.
    Oliver PM, Crooks JA, Leidl M, Yoon EJ, Saghatelian A, Weibel DB (2014) Localization of anionic phospholipids in Escherichia coli cells. J Bacteriol 196:3386–3398. doi: 10.1128/jb.01877-14 CrossRefGoogle Scholar
  109. 109.
    Vanounou S, Parola AH, Fishov I (2003) Phosphatidylethanolamine and phosphatidylglycerol are segregated into different domains in bacterial membrane. A study with pyrene-labelled phospholipids. Mol Microbiol 49:1067–1079. doi: 10.1046/j.1365-2958.2003.03614.x CrossRefGoogle Scholar
  110. 110.
    Goldfine H (1984) Bacterial membranes and lipid packing theory. J Lipid Res 25:1501–1507Google Scholar
  111. 111.
    Matsumoto K, Hara H, Fishov I, Mileykovskaya E, Norris V (2015) The membrane: Transertion as an organizing principle in membrane heterogeneity. Front Microbiol 6. doi: 10.3389/fmicb.2015.00572
  112. 112.
    Mileykovskaya E, Dowhan W (2009) Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim Biophys Acta Biomembr 1788:2084–2091. doi: 10.1016/j.bbamem.2009.04.003 CrossRefGoogle Scholar
  113. 113.
    Seddon AM, Lorch M, Ces O, Templer RH, Macrae F, Booth PJ (2008) Phosphatidylglycerol lipids enhance folding of an α helical membrane protein. J Mol Biol 380:548–556. doi: 10.1016/j.jmb.2008.05.001 CrossRefGoogle Scholar
  114. 114.
    Bevers EM, Wang HH, Op Den Kamp JAF, Van Deenen LLM (1979) On the interaction between intrinsic proteins and phosphatidylglycerol in the membrane of Acholeplasma laidlawii. Arch Biochem Biophys 193:502–508. doi: 10.1016/0003-9861(79)90057-2 CrossRefGoogle Scholar
  115. 115.
    Picas L, Merino-Montero S, Morros A, Hernández-Borrell J, Montero MT (2007) Monitoring pyrene excimers in lactose permease liposomes: revealing the presence of phosphatidylglycerol in proximity to an integral membrane protein. J Fluoresc 17:649–654. doi: 10.1007/s10895-006-0073-0 CrossRefGoogle Scholar
  116. 116.
    Masataka I, Masateru N, Michie K, Makoto K (1976) Function of phosphatidylglycerol molecular species in membranes activation of membrane-bound SN-glycerol 3-phosphate acyltransferase in Escherichia coli. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 431:426–432. doi: 10.1016/0005-2760(76)90209-5 CrossRefGoogle Scholar
  117. 117.
    de Vrije T, de Swart RL, Dowhan W, Tommassen J, de Kruijff B (1988) Phosphatidylglycerol is involved in protein translocation across Escherichia coli inner membranes. Nature 334:173–175CrossRefGoogle Scholar
  118. 118.
    Furse S, Scott DJ (2016) Three-Dimensional Distribution of Phospholipids in Gram Negative Bacteria. Biochemistry 55:4742-4747 doi: 10.1021/acs.biochem.6b00541
  119. 119.
    Mileykovskaya E, Dowhan W (2005) Role of membrane lipids in bacterial division-site selection. Curr Opin Microbiol 8:135–142. doi: 10.1016/j.mib.2005.02.012 CrossRefGoogle Scholar
  120. 120.
    Renner LD, Weibel DB (2012) MinD and MinE interact with anionic phospholipids and regulate division plane formation in Escherichia coli. J Biol Chem 287:38835–38844. doi: 10.1074/jbc.M112.407817 CrossRefGoogle Scholar
  121. 121.
    Newman G, Crooke E (2000) DnaA, the initiator of Escherichia coli chromosomal replication, is located at the cell membrane. J Bacteriol 182:2604–2610. doi: 10.1128/jb.182.9.2604-2610.2000 CrossRefGoogle Scholar
  122. 122.
    Sekimizu K, Kornberg A (1988) Cardiolipin activation of dnaA protein, the initiation protein of replication in Escherichia coli. J Biol Chem 263:7131–7135Google Scholar
  123. 123.
    Xia W, Dowhan W (1995) In vivo evidence for the involvement of anionic phospholipids in initiation of DNA replication in Escherichia coli. Proc Natl Acad Sci 92:783–787CrossRefGoogle Scholar
  124. 124.
    Sutton GC, Russell NJ, Quinn PJ (1990) The effect of salinity on the phase behaviour of purified phosphatidylethanolamine and phosphatidylglycerol isolated from a moderately halophilic eubacterium. Chem Phys Lipids 56:135–147. doi: 10.1016/0009-3084(90)90096-A CrossRefGoogle Scholar
  125. 125.
    Higashi Y, Strominger JL (1970) Biosynthesis of the peptidoglycan of bacterial cell walls: XX. Identification of phosphatidylglycerol and cardiolipin as cofactors for Isoprenoid alcohol phosphokinase. J Biol Chem 245:3691–3696Google Scholar
  126. 126.
    Suling WJ, O'Leary WM (1977) Lipids of antibiotic-resistant and -susceptible members of the Enterobacteriaceae. Can J Microbiol 23:1045–1051. doi: 10.1139/m77-156 CrossRefGoogle Scholar
  127. 127.
    Luévano-Martínez LA, Kowaltowski AJ (2015) Phosphatidylglycerol-derived phospholipids have a universal, domain-crossing role in stress responses. Arch Biochem Biophys 585:90–97. doi: 10.1016/ CrossRefGoogle Scholar
  128. 128.
    Yokota K, Kito M (1982) Transfer of the phosphatidyl moiety of phosphatidylglycerol to phosphatidylethanolamine in Escherichia coli. J Bacteriol 151:952–961Google Scholar
  129. 129.
    Lombardi FJ, Fulco AJ (1980) Two distinct pools of membrane phosphatidylglycerol in Bacillus megaterium. J Bacteriol 141:618–625Google Scholar
  130. 130.
    Lombardi FJ, Chen SL, Fulco AJ (1980) A rapidly metabolizing pool of phosphatidylglycerol as a precursor of phosphatidylethanolamine and diglyceride in Bacillus megaterium. J Bacteriol 141:626–634Google Scholar
  131. 131.
    Fischer W, Leopold K (1999) Polar lipids of four listeria species containing L-lysylcardiolipin, a novel lipid structure, and other unique phospholipids. Int J Syst Bacteriol 49:653–662. doi: 10.1099/00207713-49-2-653 CrossRefGoogle Scholar
  132. 132.
    Tatituri RVV, Wolf BJ, Brenner MB, Turk J, Hsu FF (2015) Characterization of polar lipids of Listeria monocytogenes by HCD and low-energy CAD linear ion-trap mass spectrometry with electrospray ionization. Anal Bioanal Chem 407:2519–2528. doi: 10.1007/s00216-015-8480-1 CrossRefGoogle Scholar
  133. 133.
    Key Seung C, Seung Duk H, Joong Myung C, Chung Soon C, Kang Suk L (1977) Studies on the biosynthesis of acylphosphatidylglycerol in Escherichia coli B and B/r. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 486:47–54. doi: 10.1016/0005-2760(77)90068-6 CrossRefGoogle Scholar
  134. 134.
    Pieringer R, Shaw JM, Ganfield M-C (1978) The role of phosphatidylglycerol as a donor of phosphatidyl and of sn-glycerol-1-phosphate groups in biosynthetic reactions. In: Gatt S, Freysz L, Mandel P (eds) Enzymes of Lipid Metabolism, vol 101. Advances in Experimental Medicine and Biology. Springer US, pp 279–285. doi:10.1007/978–1–4615-9071-2_27Google Scholar
  135. 135.
    Farren SB, Cullis PR (1980) Polymorphism of phosphatidylglycerol-phosphatidylethanolamine model membrane systems: a 31P NMR study. Biochem Biophys Res Commun 97:182–191. doi: 10.1016/S0006-291X(80)80152-5 CrossRefGoogle Scholar
  136. 136.
    Fleming BD, Raynor CM, Keough KMW (1983) Some characteristics of monolayers of 1-palmitoyl-2-oleoyl-phosphatidylglycerol with and without dipalmitoylphosphatidylcholine during dynamic compression and expansion. Biochim Biophys Acta Biomembr 732:243–250. doi: 10.1016/0005-2736(83)90208-0 CrossRefGoogle Scholar
  137. 137.
    Marsch D, Watts A (1978) NMR spin—spin splittings in lipid membranes headgroup conformation in phosphatidylglycerol bilayers. FEBS Lett 85:124–126. doi: 10.1016/0014-5793(78)81262-9 CrossRefGoogle Scholar
  138. 138.
    Mischel M, Seelig J, Braganza LF, Büldt G (1987) A neutron diffraction study of the headgroup conformation of phosphatidylglycerol from Escherichia coli membranes. Chem Phys Lipids 43:237–246. doi: 10.1016/0009-3084(87)90020-X CrossRefGoogle Scholar
  139. 139.
    Watts A, Harlos K, Marsh D (1981) Charge-induced tilt in ordered-phase phosphatidylglycerol bilayers evidence from x-ray diffraction. Biochim Biophys Acta Biomembr 645:91–96. doi: 10.1016/0005-2736(81)90515-0 CrossRefGoogle Scholar
  140. 140.
    Mulet X, Templer RH, Woscholski R, Ces O (2008) Evidence that phosphatidylinositol promotes curved membrane interfaces. Langmuir 24:8443–8447CrossRefGoogle Scholar
  141. 141.
    Peng A, Pisal DS, Doty A, Balu-Iyer SV (2012) Phosphatidylinositol induces fluid phase formation and packing defects in phosphatidylcholine model membranes. Chem Phys Lipids 165:15–22. doi: 10.1016/j.chemphyslip.2011.10.002 CrossRefGoogle Scholar
  142. 142.
    Furse S et al (2012) Lipid membrane curvature induced by distearoyl phosphatidylinositol 4-phosphate. Soft Matter 8:3090–3093. doi: 10.1039/c2sm07358g CrossRefGoogle Scholar
  143. 143.
    Furse S, Brooks NJ, Woscholski R, Gaffney PRJ, Templer RH (2016a) Pressure-dependent inverse bicontinuous cubic phase formation in a phosphatidylinositol 4-phosphate/phosphatidylcholine system. Chemical Data Collections. doi: 10.1016/j.cdc.2016.08.001
  144. 144.
    Killian JA, Koorengevel MC, Bouwstra JA, Gooris G, Dowhan W, de Kruijff B (1994) Effect of divalent cations on lipid organization of cardiolipin isolated from Escherichia coli strain AH930. Biochim Biophys Acta 1189:225–232. doi: 10.1016/0005-2736(94)90069-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Molekylærbiologisk instituttUnversitetet i BergenBergenNorway

Personalised recommendations