Journal of Chemical Biology

, Volume 7, Issue 4, pp 143–161 | Cite as

Resistance to antifungals that target CYP51

  • Josie E. Parker
  • Andrew G. S. Warrilow
  • Claire L. Price
  • Jonathan G. L. Mullins
  • Diane E. Kelly
  • Steven L. Kelly
Review

Abstract

Fungal diseases are an increasing global burden. Fungi are now recognised to kill more people annually than malaria, whilst in agriculture, fungi threaten crop yields and food security. Azole resistance, mediated by several mechanisms including point mutations in the target enzyme (CYP51), is increasing through selection pressure as a result of widespread use of triazole fungicides in agriculture and triazole antifungal drugs in the clinic. Mutations similar to those seen in clinical isolates as long ago as the 1990s in Candida albicans and later in Aspergillus fumigatus have been identified in agriculturally important fungal species and also wider combinations of point mutations. Recently, evidence that mutations originate in the field and now appear in clinical infections has been suggested. This situation is likely to increase in prevalence as triazole fungicide use continues to rise. Here, we review the progress made in understanding azole resistance found amongst clinically and agriculturally important fungal species focussing on resistance mechanisms associated with CYP51. Biochemical characterisation of wild-type and mutant CYP51 enzymes through ligand binding studies and azole IC50 determinations is an important tool for understanding azole susceptibility and can be used in conjunction with microbiological methods (MIC50 values), molecular biological studies (site-directed mutagenesis) and protein modelling studies to inform future antifungal development with increased specificity for the target enzyme over the host homologue.

Keywords

CYP51 Sterol 14-demethylase Point mutations Azole resistance Antifungals Fungicides 

References

  1. 1.
    Shelton BK (2000) Opportunistic fungal infections in the critically ill. Crit Care Nurs Clin N Am 12(3):323–340Google Scholar
  2. 2.
    GAFFI (2014) Global action fund for fungal infection; http://www.gaffi.org/
  3. 3.
  4. 4.
    Havlickova B, Czaika VA, Friedrich M (2008) Epidemiological trends in skin mycoses worldwide. Mycoses 51(Suppl 4):2–15Google Scholar
  5. 5.
    Matee MI, Scheutz F, Moshy J (2000) Occurrence of oral lesions in relation to clinical and immunological status among HIV-infected adult Tanzanians. Oral Dis 6(2):106–111Google Scholar
  6. 6.
    Smith E, Orholm M (1990) Trends and patterns of opportunistic diseases in Danish AIDS patients 1980-1990. Scand J Infect Dis 22(6):665–672Google Scholar
  7. 7.
    Sobel JD (2007) Vulvovaginal candidosis. Lancet 369(9577):1961–1971Google Scholar
  8. 8.
    Arendrup MC (2010) Epidemiology of invasive candidiasis. Curr Opin Crit Care 16(5):445–452Google Scholar
  9. 9.
    Parkin DM et al (2005) Global cancer statistics, 2002. CA Cancer J Clin 55(2):74–108Google Scholar
  10. 10.
    Guinea J et al (2010) Pulmonary aspergillosis in patients with chronic obstructive pulmonary disease: incidence, risk factors, and outcome. Clin Microbiol Infect 16(7):870–877Google Scholar
  11. 11.
    Denning DW, Pleuvry A, Cole DC (2013) Global burden of allergic bronchopulmonary aspergillosis with asthma and its complication chronic pulmonary aspergillosis in adults. Med Mycol 51(4):361–370Google Scholar
  12. 12.
    Denning DW, Pleuvry A, Cole DC (2011) Global burden of chronic pulmonary aspergillosis as a sequel to pulmonary tuberculosis. Bull World Health Organ 89(12):864–872Google Scholar
  13. 13.
    Smith NL, Denning DW (2011) Underlying conditions in chronic pulmonary aspergillosis including simple aspergilloma. Eur Respir J 37(4):865–872Google Scholar
  14. 14.
    Park BJ et al (2009) Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23(4):525–530Google Scholar
  15. 15.
    Chiller TM, Galgiani JN, Stevens DA (2003) Coccidioidomycosis. Infect Dis Clin N Am 17(1):41–57, viiiGoogle Scholar
  16. 16.
  17. 17.
    Ashbee HR, Scheynius A (2010) Malassezia. In: Ashbee HR, Bignell EM (eds) Pathogenic yeasts. The yeast handbook. Springer, Berlin HeidelbergGoogle Scholar
  18. 18.
    Gupta AK et al (2004) Skin diseases associated with Malassezia species. J Am Acad Dermatol 51(5):785–798Google Scholar
  19. 19.
    Batra R et al (2005) Malassezia Baillon, emerging clinical yeasts. FEMS Yeast Res 5(12):1101–1113Google Scholar
  20. 20.
    Lakshmipathy DT, Kannabiran K (2010) Review on dermatomycosis: pathogenesis and treatment. Nat Sci 2(7):726–731Google Scholar
  21. 21.
    Jackson CJ et al (2000) Strain identification of Trichophyton rubrum by specific amplification of subrepeat elements in the ribosomal DNA nontranscribed spacer. J Clin Microbiol 38(12):4527–4534Google Scholar
  22. 22.
    Bowyer P, Denning DW (2014) Environmental fungicides and triazole resistance in Aspergillus. Pest Manag Sci 70(2):173–178Google Scholar
  23. 23.
    ECPA, European Crop Protection Association (2012) The assessment of the economic importance of azoles in european agriculture: wheat case study. NOMISMA, Bologna, Italy. available at; http://www.ecpa.eu/article/agriculture-today/assessment-economic-importance-azoles-european-agriculture-wheat-case-stud
  24. 24.
    Bhanderi B (2009) Antifungal drug resistance—concerns for veterinarians. Vet World 2(5):204–207Google Scholar
  25. 25.
    US forest service. Types of wood preservative. Available at; http://www.fs.fed.us/td/pubs/pdfpubs/pdf06772809/pdf06772809dpi72pt03.pdf
  26. 26.
    EPA, Environmental Protection Agency. Registration eligibility decision; Propiconazole. available from http://www.epa.gov/oppsrrd1/REDs/propiconazole_red.pdf2006
  27. 27.
    GE, GE Water and Process Technologies (2011) A product of ecomagination. Halogen resistant azole capability profile (cp101.pdf.) available at https://knowledgecentral.gewater.com/
  28. 28.
    Shyadehi AZ et al (1996) The mechanism of the acyl-carbon bond cleavage reaction catalyzed by recombinant sterol 14 alpha-demethylase of Candida albicans (other names are: lanosterol 14 alpha-demethylase, P-45014DM, and CYP51). J Biol Chem 271(21):12445–12450Google Scholar
  29. 29.
    Kelly SL et al (2003) The biodiversity of microbial cytochromes P450. Adv Microb Physiol 47:131–186Google Scholar
  30. 30.
    Marichal P et al (1999) Accumulation of 3-ketosteroids induced by itraconazole in azole-resistant clinical Candida albicans isolates. Antimicrob Agents Chemother 43(11):2663–2670Google Scholar
  31. 31.
    Martel CM et al (2010) Identification and characterization of four azole-resistant erg3 mutants of Candida albicans. Antimicrob Agents Chemother 54(11):4527–4533Google Scholar
  32. 32.
    Vanden Bossche H et al (1993) Effects of itraconazole on cytochrome P-450-dependent sterol 14 alpha-demethylation and reduction of 3-ketosteroids in Cryptococcus neoformans. Antimicrob Agents Chemother 37(10):2101–2105Google Scholar
  33. 33.
    Fromtling RA (1988) Overview of medically important antifungal azole derivatives. Clin Microbiol Rev 1(2):187–217Google Scholar
  34. 34.
    Russell PE (2005) A century of fungicide evolution. J Agric Sci 143(01):11–25Google Scholar
  35. 35.
    Gupta AK, Sauder DN, Shear NH (1994) Antifungal agents: an overview. Part I. J Am Acad Dermatol 30(5 Pt 1):677–698, quiz 698-700Google Scholar
  36. 36.
    Heeres J et al (1979) Antimycotic imidazoles. Part 4. Synthesis and antifungal activity of ketoconazole, a new potent orally active broad-spectrum antifungal agent. J Med Chem 22(8):1003–1005Google Scholar
  37. 37.
    Lewis JH et al (1984) Hepatic injury associated with ketoconazole therapy. Analysis of 33 cases. Gastroenterology 86(3):503–513Google Scholar
  38. 38.
    Pont A et al (1982) Ketoconazole blocks testosterone synthesis. Arch Intern Med 142(12):2137–2140Google Scholar
  39. 39.
    Pont A et al (1982) Ketoconazole blocks adrenal steroid synthesis. Ann Intern Med 97(3):370–372Google Scholar
  40. 40.
    Johnson LB, Kauffman CA (2003) Voriconazole: a new triazole antifungal agent. Clin Infect Dis 36(5):630–637Google Scholar
  41. 41.
    Maertens JA (2004) History of the development of azole derivatives. Clin Microbiol Infect 10(s1):1–10Google Scholar
  42. 42.
    Gothard P, Rogers TR (2004) Voriconazole for serious fungal infections. Int J Clin Pract 58(1):74–80Google Scholar
  43. 43.
    Scott LJ, Simpson D (2007) Voriconazole : a review of its use in the management of invasive fungal infections. Drugs 67(2):269–298Google Scholar
  44. 44.
    Denning DW et al (2002) Efficacy and safety of voriconazole in the treatment of acute invasive aspergillosis. Clin Infect Dis 34(5):563–571Google Scholar
  45. 45.
    Bartroli J et al (1998) New azole antifungals. 2. Synthesis and antifungal activity of heterocyclecarboxamide derivatives of 3-amino-2-aryl-1-azolyl-2-butanol. J Med Chem 41(11):1855–1868Google Scholar
  46. 46.
    Bartroli J et al (1998) New azole antifungals. 3. Synthesis and antifungal activity of 3-substituted-4(3H)-quinazolinones. J Med Chem 41(11):1869–1882Google Scholar
  47. 47.
    Pasqualotto AC, Thiele KO, Goldani LZ (2010) Novel triazole antifungal drugs: focus on isavuconazole, ravuconazole and albaconazole. Curr Opin Investig Drugs 11(2):165–174Google Scholar
  48. 48.
    Fung-Tomc JC et al (1998) In vitro activity of a new oral triazole, BMS-207147 (ER-30346). Antimicrob Agents Chemother 42(2):313–318Google Scholar
  49. 49.
    Minassian B et al (2003) In vitro activity of ravuconazole against Zygomycetes, Scedosporium and Fusarium isolates. Clin Microbiol Infect 9(12):1250–1252Google Scholar
  50. 50.
    Odds FC (2006) Drug evaluation: BAL-8557—a novel broad-spectrum triazole antifungal. Curr Opin Investig Drugs 7(8):766–772Google Scholar
  51. 51.
    Warn PA, Sharp A, Denning DW (2006) In vitro activity of a new triazole BAL4815, the active component of BAL8557 (the water-soluble prodrug), against Aspergillus spp. J Antimicrob Chemother 57(1):135–138Google Scholar
  52. 52.
    Odds F et al (2004) In vitro and in vivo activities of the novel azole antifungal agent r126638. Antimicrob Agents Chemother 48(2):388–391Google Scholar
  53. 53.
    Vanden Bossche H et al (2004) The novel azole R126638 is a selective inhibitor of ergosterol synthesis in Candida albicans, Trichophyton spp., and Microsporum canis. Antimicrob Agents Chemother 48(9):3272–3278Google Scholar
  54. 54.
    Meerpoel L et al (2005) Synthesis and in vitro and in vivo structure-activity relationships of novel antifungal triazoles for dermatology. J Med Chem 48(6):2184–2193Google Scholar
  55. 55.
    Geria AN, Scheinfeld NS (2008) Pramiconazole, a triazole compound for the treatment of fungal infections. IDrugs 11(9):661–670Google Scholar
  56. 56.
    McDougal P (2006) Agriservice reportGoogle Scholar
  57. 57.
    ECDPC, European Centre for Disease Prevention and Control (2013) Risk assessment on the impact of environmental usage of triazoles on the development and spread of resistance to medical triazoles in Aspergillus species. StockholmGoogle Scholar
  58. 58.
    Cools HJ et al (2011) Impact of recently emerged sterol 14{alpha}-demethylase (CYP51) variants of Mycosphaerella graminicola on azole fungicide sensitivity. Appl Environ Microbiol 77(11):3830–3837Google Scholar
  59. 59.
    Howard SJ et al (2009) Frequency and evolution of azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg Infect Dis 15(7):1068–1076Google Scholar
  60. 60.
    Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20(1):133–163Google Scholar
  61. 61.
    Richardson MD (2005) Changing patterns and trends in systemic fungal infections. J Antimicrob Chemother 56(Suppl 1):i5–i11Google Scholar
  62. 62.
    Sims CR, Ostrosky-Zeichner L, Rex JH (2005) Invasive candidiasis in immunocompromised hospitalized patients. Arch Med Res 36(6):660–671Google Scholar
  63. 63.
    Snelders E et al (2008) Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med 5(11):e219Google Scholar
  64. 64.
    Watson PF et al (1989) Defective sterol C5-6 desaturation and azole resistance: a new hypothesis for the mode of action of azole antifungals. Biochem Biophys Res Commun 164(3):1170–1175Google Scholar
  65. 65.
    Eddouzi J et al (2013) Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals. Antimicrob Agents Chemother 57(7):3182–3193Google Scholar
  66. 66.
    Kelly SL et al (1995) Mode of action and resistance to azole antifungals associated with the formation of 14 alpha-methylergosta-8,24(28)-dien-3 beta,6 alpha-diol. Biochem Biophys Res Commun 207(3):910–915Google Scholar
  67. 67.
    Rinaldi MG (1993) Biology and pathogenicity of Candida species, pathogenesis, diagnosis and treatment. In: Bodey GP (ed) Candidiasis, pathogenesis, diagnosis and treatment. Raven, New York, pp 1–20Google Scholar
  68. 68.
    Marriott DJ et al (2009) Determinants of mortality in non-neutropenic ICU patients with candidaemia. Crit Care 13(4):R115Google Scholar
  69. 69.
    Magill SS et al (2009) The epidemiology of Candida colonization and invasive candidiasis in a surgical intensive care unit where fluconazole prophylaxis is utilized: follow-up to a randomized clinical trial. Ann Surg 249(4):657–665Google Scholar
  70. 70.
    Vandeputte P, Ferrari S, Coste AT (2012) Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012:713687Google Scholar
  71. 71.
    Horn DL et al (2009) Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin Infect Dis 48(12):1695–1703Google Scholar
  72. 72.
    Neofytos D et al (2009) Epidemiology and outcome of invasive fungal infection in adult hematopoietic stem cell transplant recipients: analysis of Multicenter Prospective Antifungal Therapy (PATH) Alliance registry. Clin Infect Dis 48(3):265–273Google Scholar
  73. 73.
    Pfaller MA et al (2002) Trends in antifungal susceptibility of Candida spp. isolated from pediatric and adult patients with bloodstream infections: SENTRY Antimicrobial Surveillance Program, 1997 to 2000. J Clin Microbiol 40(3):852–856Google Scholar
  74. 74.
    Sanglard D, Odds FC (2002) Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2(2):73–85Google Scholar
  75. 75.
    Tobudic S, Kratzer C, Presterl E (2012) Azole-resistant Candida spp.—emerging pathogens? Mycoses 55:24–32Google Scholar
  76. 76.
    White TC, Marr KA, Bowden RA (1998) Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11(2):382–402Google Scholar
  77. 77.
    Löffler J et al (1997) Molecular analysis of cyp51 from fluconazole-resistant Candida albicans strains. FEMS Microbiol Lett 151(2):263–268Google Scholar
  78. 78.
    Sanglard D et al (1998) Amino acid substitutions in the cytochrome P-450 lanosterol 14α-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrob Agents Chemother 42(2):241–253Google Scholar
  79. 79.
    Sanglard D et al (1995) Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother 39(11):2378–2386Google Scholar
  80. 80.
    Venkateswarlu K et al (1995) Resistance to fluconazole in Candida albicans from AIDS patients correlated with reduced intracellular accumulation of drug. FEMS Microbiol Lett 131(3):337–341Google Scholar
  81. 81.
    Cernicka J, Subik J (2006) Resistance mechanisms in fluconazole-resistant Candida albicans isolates from vaginal candidiasis. Int J Antimicrob Agents 27(5):403–408Google Scholar
  82. 82.
    Chau AS et al (2004) Application of real-time quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles. Antimicrob Agents Chemother 48(6):2124–2131Google Scholar
  83. 83.
    Coste A et al (2007) Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot Cell 6(10):1889–1904Google Scholar
  84. 84.
    Franz R et al (1998) Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains. Antimicrob Agents Chemother 42(12):3065–3072Google Scholar
  85. 85.
    Goldman GH et al (2004) Evaluation of fluconazole resistance mechanisms in Candida albicans clinical isolates from HIV-infected patients in Brazil. Diagn Microbiol Infect Dis 50(1):25–32Google Scholar
  86. 86.
    Morio F et al (2010) Screening for amino acid substitutions in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates: new substitutions and a review of the literature. Diagn Microbiol Infect Dis 66(4):373–384Google Scholar
  87. 87.
    Marichal P et al (1999) Contribution of mutations in the cytochrome P450 14alpha-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans. Microbiology 145(Pt 10):2701–2713Google Scholar
  88. 88.
    Kudo M et al (2005) Effects of Y132H and F145L substitutions on the activity, azole resistance and spectral properties of Candida albicans sterol 14-demethylase P450 (CYP51): a live example showing the selection of altered P450 through interaction with environmental compounds. J Biochem 137(5):625–632Google Scholar
  89. 89.
    Bellamine A, Lepesheva GI, Waterman MR (2004) Fluconazole binding and sterol demethylation in three CYP51 isoforms indicate differences in active site topology. J Lipid Res 45(11):2000–2007Google Scholar
  90. 90.
    Warrilow AG et al (2010) Azole binding properties of Candida albicans sterol 14-alpha demethylase (CaCYP51). Antimicrob Agents Chemother 54(10):4235–4245Google Scholar
  91. 91.
    Warrilow AG et al (2012) S279 point mutations in Candida albicans sterol 14-alpha demethylase (CYP51) reduce in vitro inhibition by fluconazole. Antimicrob Agents Chemother 56(4):2099–2107Google Scholar
  92. 92.
    Kelly SL et al (1999) The G464S amino acid substitution in Candida albicans sterol 14alpha-demethylase causes fluconazole resistance in the clinic through reduced affinity. Biochem Biophys Res Commun 262(1):174–179Google Scholar
  93. 93.
    Lamb DC et al (2000) The R467K amino acid substitution in Candida albicans sterol 14alpha-demethylase causes drug resistance through reduced affinity. Antimicrob Agents Chemother 44(1):63–67Google Scholar
  94. 94.
    Lamb DC et al (1997) The mutation T315A in Candida albicans sterol 14alpha-demethylase causes reduced enzyme activity and fluconazole resistance through reduced affinity. J Biol Chem 272(9):5682–5688Google Scholar
  95. 95.
    Verweij PE, Denning DW (1997) The challenge of invasive aspergillosis: increasing numbers in diverse patient groups. Int J Infect Dis 2(2):61–63Google Scholar
  96. 96.
    Denning DW, Perlin DS (2011) Azole resistance in Aspergillus: a growing public health menace. Future Microbiol 6(11):1229–1232Google Scholar
  97. 97.
    Terpstra P et al (2011) Filamentous fungi in the Netherlands among CF patients. Mycoses 54(Suppl 2):152–152Google Scholar
  98. 98.
    Mortensen KL et al (2011) Aspergillus species and other molds in respiratory samples from patients with cystic fibrosis: a laboratory-based study with focus on Aspergillus fumigatus azole resistance. J Clin Microbiol 49(6):2243–2251Google Scholar
  99. 99.
    Burgel PR et al (2012) High prevalence of azole-resistant Aspergillus fumigatus in adults with cystic fibrosis exposed to itraconazole. Antimicrob Agents Chemother 56(2):869–874Google Scholar
  100. 100.
    van der Linden JW et al (2011) Clinical implications of azole resistance in Aspergillus fumigatus, The Netherlands, 2007-2009. Emerg Infect Dis 17(10):1846–1854Google Scholar
  101. 101.
    Lockhart SR et al (2011) Azole resistance in Aspergillus fumigatus isolates from the ARTEMIS global surveillance study is primarily due to the TR/L98H mutation in the cyp51A gene. Antimicrob Agents Chemother 55(9):4465–4468Google Scholar
  102. 102.
    Bueid A et al (2010) Azole antifungal resistance in Aspergillus fumigatus: 2008 and 2009. J Antimicrob Chemother 65(10):2116–2118Google Scholar
  103. 103.
    Mellado E et al (2005) Targeted gene disruption of the 14-alpha sterol demethylase (cyp51A) in Aspergillus fumigatus and its role in azole drug susceptibility. Antimicrob Agents Chemother 49(6):2536–2538Google Scholar
  104. 104.
    Garcia-Effron G et al (2005) Differences in interactions between azole drugs related to modifications in the 14-alpha sterol demethylase gene (cyp51A) of Aspergillus fumigatus. Antimicrob Agents Chemother 49(5):2119–2121Google Scholar
  105. 105.
    Martel CM et al (2010) Complementation of a Saccharomyces cerevisiae ERG11/CYP51 (sterol 14alpha-demethylase) doxycycline-regulated mutant and screening of the azole sensitivity of Aspergillus fumigatus isoenzymes CYP51A and CYP51B. Antimicrob Agents Chemother 54(11):4920–4923Google Scholar
  106. 106.
    Hu W et al (2007) Essential gene identification and drug target prioritization in Aspergillus fumigatus. PLoS Pathog 3(3):e24Google Scholar
  107. 107.
    Warrilow AG et al (2010) Expression, purification, and characterization of Aspergillus fumigatus sterol 14-alpha demethylase (CYP51) isoenzymes A and B. Antimicrob Agents Chemother 54(10):4225–4234Google Scholar
  108. 108.
    Albarrag AM et al (2011) Interrogation of related clinical pan-azole-resistant Aspergillus fumigatus strains: G138C, Y431C, and G434C single nucleotide polymorphisms in cyp51A, upregulation of cyp51A, and integration and activation of transposon Atf1 in the cyp51A promoter. Antimicrob Agents Chemother 55(11):5113–5121Google Scholar
  109. 109.
    Slaven JW et al (2002) Increased expression of a novel Aspergillus fumigatus ABC transporter gene, atrF, in the presence of itraconazole in an itraconazole resistant clinical isolate. Fungal Genet Biol 36(3):199–206Google Scholar
  110. 110.
    Buied A et al (2013) High-level expression of cyp51B in azole-resistant clinical Aspergillus fumigatus isolates. J Antimicrob Chemother 68(3):512–514Google Scholar
  111. 111.
    da Silva Ferreira ME et al (2004) In vitro evolution of itraconazole resistance in Aspergillus fumigatus involves multiple mechanisms of resistance. Antimicrob Agents Chemother 48(11):4405–4413Google Scholar
  112. 112.
    Diaz-Guerra TM et al (2003) A point mutation in the 14alpha-sterol demethylase gene cyp51A contributes to itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 47(3):1120–1124Google Scholar
  113. 113.
    Nascimento AM et al (2003) Multiple resistance mechanisms among Aspergillus fumigatus mutants with high-level resistance to itraconazole. Antimicrob Agents Chemother 47(5):1719–1726Google Scholar
  114. 114.
    Bowyer P et al (2012) Identification of novel genes conferring altered azole susceptibility in Aspergillus fumigatus. FEMS Microbiol Lett 332(1):10–19Google Scholar
  115. 115.
    Fraczek MG et al (2013) The cdr1B efflux transporter is associated with non-cyp51a-mediated itraconazole resistance in Aspergillus fumigatus. J Antimicrob Chemother 68(7):1486–1496Google Scholar
  116. 116.
    Camps SM et al (2012) Discovery of a HapE mutation that causes azole resistance in Aspergillus fumigatus through whole genome sequencing and sexual crossing. PLoS One 7(11):e50034Google Scholar
  117. 117.
    Mann PA et al (2003) Mutations in Aspergillus fumigatus resulting in reduced susceptibility to posaconazole appear to be restricted to a single amino acid in the cytochrome P450 14alpha-demethylase. Antimicrob Agents Chemother 47(2):577–581Google Scholar
  118. 118.
    Mellado E et al (2007) A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrob Agents Chemother 51(6):1897–1904Google Scholar
  119. 119.
    Snelders E et al (2011) The structure-function relationship of the Aspergillus fumigatus cyp51A L98H conversion by site-directed mutagenesis: the mechanism of L98H azole resistance. Fungal Genet Biol 48(11):1062–1070Google Scholar
  120. 120.
    Mellado E et al (2004) Substitutions at methionine 220 in the 14alpha-sterol demethylase (Cyp51A) of Aspergillus fumigatus are responsible for resistance in vitro to azole antifungal drugs. Antimicrob Agents Chemother 48(7):2747–2750Google Scholar
  121. 121.
    Krishnan Natesan S et al (2012) In vitro-in vivo correlation of voriconazole resistance due to G448S mutation (cyp51A gene) in Aspergillus fumigatus. Diagn Microbiol Infect Dis 74(3):272–277Google Scholar
  122. 122.
    Alanio A et al (2012) Azole preexposure affects the Aspergillus fumigatus population in patients. Antimicrob Agents Chemother 56(9):4948–4950Google Scholar
  123. 123.
    Escribano P et al (2011) Aspergillus fumigatus strains with mutations in the cyp51A gene do not always show phenotypic resistance to itraconazole, voriconazole, or posaconazole. Antimicrob Agents Chemother 55(5):2460–2462Google Scholar
  124. 124.
    Chowdhary A et al (2013) Emergence of azole-resistant Aspergillus fumigatus strains due to agricultural azole use creates an increasing threat to human health. PLoS Pathog 9(10):e1003633Google Scholar
  125. 125.
    van der Linden JW et al (2013) Aspergillosis due to voriconazole highly resistant Aspergillus fumigatus and recovery of genetically related resistant isolates from domiciles. Clin Infect Dis 57(4):513–520Google Scholar
  126. 126.
    Camps SM et al (2012) Molecular epidemiology of Aspergillus fumigatus isolates harboring the TR34/L98H azole resistance mechanism. J Clin Microbiol 50(8):2674–2680Google Scholar
  127. 127.
    Denning DW et al (1997) Itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 41(6):1364–1368Google Scholar
  128. 128.
    Venkateswarlu K (1996) Azole antifungal drugs mode of action and resistance, p140. Sheffield UniversityGoogle Scholar
  129. 129.
    Bicanic T, Harrison TS (2004) Cryptococcal meningitis. Br Med Bull 72:99–118Google Scholar
  130. 130.
    Lortholary O et al (2006) Long-term outcome of AIDS-associated cryptococcosis in the era of combination antiretroviral therapy. AIDS 20(17):2183–2191Google Scholar
  131. 131.
    Dromer F et al (2007) Determinants of disease presentation and outcome during cryptococcosis: the CryptoA/D study. PLoS Med 4(2):e21Google Scholar
  132. 132.
    Mwaba P et al (2001) Clinical presentation, natural history, and cumulative death rates of 230 adults with primary cryptococcal meningitis in Zambian AIDS patients treated under local conditions. Postgrad Med J 77(914):769–773Google Scholar
  133. 133.
    French N et al (2002) Cryptococcal infection in a cohort of HIV-1-infected Ugandan adults. AIDS 16(7):1031–1038Google Scholar
  134. 134.
    Byrnes EJ 3rd et al (2011) Cryptococcus gattii: an emerging fungal pathogen infecting humans and animals. Microbes Infect 13(11):895–907Google Scholar
  135. 135.
    Lamb DC et al (1995) Resistant P45051A1 activity in azole antifungal tolerant Cryptococcus neoformans from AIDS patients. FEBS Lett 368(2):326–330Google Scholar
  136. 136.
    Perfect JR, Cox GM (1999) Drug resistance in Cryptococcus neoformans. Drug Resist Updat 2(4):259–269Google Scholar
  137. 137.
    Rodero L et al (2003) G484S amino acid substitution in lanosterol 14-alpha demethylase (ERG11) is related to fluconazole resistance in a recurrent Cryptococcus neoformans clinical isolate. Antimicrob Agents Chemother 47(11):3653–3656Google Scholar
  138. 138.
    Sionov E et al (2012) Identification of a Cryptococcus neoformans cytochrome P450 lanosterol 14alpha-demethylase (Erg11) residue critical for differential susceptibility between fluconazole/voriconazole and itraconazole/posaconazole. Antimicrob Agents Chemother 56(3):1162–1169Google Scholar
  139. 139.
    Sionov E et al (2010) Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog 6(4):e1000848Google Scholar
  140. 140.
    Hu G et al (2011) Variation in chromosome copy number influences the virulence of Cryptococcus neoformans and occurs in isolates from AIDS patients. BMC Genomics 12:526Google Scholar
  141. 141.
    Balkis MM et al (2002) Mechanisms of fungal resistance: an overview. Drugs 62(7):1025–1040Google Scholar
  142. 142.
    Santos DA, Hamdan JS (2007) In vitro activities of four antifungal drugs against Trichophyton rubrum isolates exhibiting resistance to fluconazole. Mycoses 50(4):286–289Google Scholar
  143. 143.
    Kim D et al (2011) Functional expression and characterization of CYP51 from dandruff-causing Malassezia globosa. FEMS Yeast Res 11(1):80–87Google Scholar
  144. 144.
    Hryncewicz-Gwozdz A et al (2013) Increase in resistance to fluconazole and itraconazole in Trichophyton rubrum clinical isolates by sequential passages in vitro under drug pressure. Mycopathologia 176(1–2):49–55Google Scholar
  145. 145.
    Wheat LJ et al (2006) Activity of newer triazoles against Histoplasma capsulatum from patients with AIDS who failed fluconazole. J Antimicrob Chemother 57(6):1235–1239Google Scholar
  146. 146.
    Delye C, Laigret F, Corio-Costet MF (1997) A mutation in the 14 alpha-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Appl Environ Microbiol 63(8):2966–2970Google Scholar
  147. 147.
    Gadoury DM et al (2012) Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Mol Plant Pathol 13(1):1–16Google Scholar
  148. 148.
    Stammler G et al (2009) Role of the Y134F mutation in cyp51 and overexpression of cyp51 in the sensitivity response of Puccinia triticina to epoxiconazole. Crop Prot 28(10):891–897Google Scholar
  149. 149.
    Cañas-Gutiérrez GP et al (2009) Analysis of the CYP51 gene and encoded protein in propiconazole-resistant isolates of Mycosphaerella fijiensis. Pest Manag Sci 65(8):892–899Google Scholar
  150. 150.
    Cools HJ, Fraaije BA (2012) Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control. Pest Manag Sci 69(2):150–155Google Scholar
  151. 151.
    Cools HJ et al (2012) Overexpression of the sterol 14alpha-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype. Pest Manag Sci 68(7):1034–1040Google Scholar
  152. 152.
    Ghosoph JM et al (2007) Imazalil resistance linked to a unique insertion sequence in the PdCYP51 promoter region of Penicillium digitatum. Postharvest Biol Technol 44(1):9–18Google Scholar
  153. 153.
    Sun X et al (2013) PdMLE1, a specific and active transposon acts as a promoter and confers Penicillium digitatum with DMI resistance. Environ Microbiol Rep 5(1):135–142Google Scholar
  154. 154.
    Schnabel G, Jones AL (2001) The 14alpha-demethylasse(CYP51A1) gene is overexpressed in Venturia inaequalis strains resistant to myclobutanil. Phytopathology 91(1):102–110Google Scholar
  155. 155.
    Pfeufer EE, Ngugi HK (2012) Orchard factors associated with resistance and cross resistance to sterol demethylation inhibitor fungicides in populations of Venturia inaequalis from Pennsylvania. Phytopathology 102(3):272–282Google Scholar
  156. 156.
    Nakaune R et al (1998) A novel ATP-binding cassette transporter involved in multidrug resistance in the phytopathogenic fungus Penicillium digitatum. Appl Environ Microbiol 64(10):3983–3988Google Scholar
  157. 157.
    Kretschmer M et al (2009) Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathog 5(12):e1000696Google Scholar
  158. 158.
    Hawkins NJ et al (2014) Paralog re-emergence: a novel, historically contingent mechanism in the evolution of antimicrobial resistance. Mol Biol EvolGoogle Scholar
  159. 159.
    Fraaije BA et al (2007) A novel substitution I381V in the sterol 14alpha-demethylase (CYP51) of Mycosphaerella graminicola is differentially selected by azole fungicides. Mol Plant Pathol 8(3):245–254Google Scholar
  160. 160.
    Cools HJ et al (2010) Heterologous expression of mutated eburicol 14{alpha}-demethylase (CYP51) proteins of Mycosphaerella graminicola demonstrates effects on azole fungicide sensitivity and intrinsic protein function. Appl Environ Microbiol 76:2866–2872Google Scholar
  161. 161.
    Mullins JG et al (2011) Molecular modelling of the emergence of azole resistance in Mycosphaerella graminicola. PLoS One 6(6):e20973Google Scholar
  162. 162.
    Leroux P et al (2007) Mutations in the CYP51 gene correlated with changes in sensitivity to sterol 14 alpha-demethylation inhibitors in field isolates of Mycosphaerella graminicola. Pest Manag Sci 63(7):688–698Google Scholar
  163. 163.
    Leroux P, Walker AS (2010) Multiple mechanisms account for resistance to sterol 14alpha-demethylation inhibitors in field isolates of Mycosphaerella graminicola. Pest Manag Sci 67(1):44–59Google Scholar
  164. 164.
    Stammler G et al (2008) Frequency of different CYP51-haplotypes of Mycosphaerella graminicola and their impact on epoxiconazole-sensitivity and -field efficacy. Crop Prot 27(11):1448–1456Google Scholar
  165. 165.
    Delye C, Bousset L, Corio-Costet MF (1998) PCR cloning and detection of point mutations in the eburicol 14alpha-demethylase (CYP51) gene from Erysiphe graminis f. sp. hordei, a “recalcitrant” fungus. Curr Genet 34(5):399–403Google Scholar
  166. 166.
    Wyand RA, Brown JK (2005) Sequence variation in the CYP51 gene of Blumeria graminis associated with resistance to sterol demethylase inhibiting fungicides. Fungal Genet Biol 42(8):726–735Google Scholar
  167. 167.
    Perea S et al (2001) Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 45(10):2676–2684Google Scholar
  168. 168.
    Warrilow AG et al (2013) Azole affinity of sterol 14alpha-demethylase (CYP51) enzymes from Candida albicans and Homo sapiens. Antimicrob Agents Chemother 57(3):1352–1360Google Scholar
  169. 169.
    Jefcoate CR (1978) Measurement of substrate and inhibitor binding to microsomal cytochrome P-450 by optical-difference spectroscopy pp258-279. In Fleischer S, Packer L (ed) Biomembranes Part C, Methods in Enzymology. Vol. 52. Elsevier inc. USAGoogle Scholar
  170. 170.
    Lange R, Bonfils C, Debey P (1977) The low-spin/high-spin transition equilibrium of camphor-bound cytochrome P-450. Effects of medium and temperature on equilibrium data. Eur J Biochem 79(2):623–628Google Scholar
  171. 171.
    Jefcoate CR, Gaylor JL, Calabrese RL (1969) Ligand interactions with cytochrome P450. I. Binding of primary amines. Biochemistry 8:3455–3463Google Scholar
  172. 172.
    Lutz JD et al (2009) Expression and functional characterization of cytochrome P450 26A1, a retinoic acid hydroxylase. Biochem Pharmacol 77(2):258–268Google Scholar
  173. 173.
    Copeland RA (2005) Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists an pharmacologists. Wiley-Interscience, New York, pp 178–213Google Scholar
  174. 174.
    Parker JE et al (2011) Mechanism of binding of prothioconazole to Mycosphaerella graminicola CYP51 differs from that of other azole antifungals. Appl Environ Microbiol 77(4):1460–1465Google Scholar
  175. 175.
    Parker JE et al (2013) Prothioconazole and prothioconazole-desthio activities against Candida albicans sterol 14-alpha-demethylase. Appl Environ Microbiol 79(5):1639–1645Google Scholar
  176. 176.
    Lepesheva GI et al (2007) Sterol 14alpha-demethylase as a potential target for antitrypanosomal therapy: enzyme inhibition and parasite cell growth. Chem Biol 14(11):1283–1293Google Scholar
  177. 177.
    Rupp B et al (2005) Molecular design of two sterol 14α-demethylase homology models and their interactions with the azole antifungals ketoconazole and bifonazole. J Comput Aided Mol Des 19(3):149–163Google Scholar
  178. 178.
    Ji H et al (2000) A three-dimensional model of lanosterol 14alpha-demethylase of Candida albicans and its interaction with azole antifungals. J Med Chem 43(13):2493–2505Google Scholar
  179. 179.
    Xiao L et al (2004) Three-dimensional models of wild-type and mutated forms of cytochrome P450 14{alpha}-sterol demethylases from Aspergillus fumigatus and Candida albicans provide insights into posaconazole binding. Antimicrob Agents Chemother 48(2):568–574Google Scholar
  180. 180.
    Lepesheva GI et al (2010) Crystal structures of Trypanosoma brucei sterol 14alpha-demethylase and implications for selective treatment of human infections. J Biol Chem 285(3):1773–1780Google Scholar
  181. 181.
    Lepesheva GI et al (2010) Structural insights into inhibition of sterol 14alpha-demethylase in the human pathogen Trypanosoma cruzi. J Biol Chem 285(33):25582–25590Google Scholar
  182. 182.
    Hargrove TY et al (2011) Substrate preferences and catalytic parameters determined by structural characteristics of sterol 14alpha-demethylase (CYP51) from Leishmania infantum. J Biol Chem 286(30):26838–26848Google Scholar
  183. 183.
    Strushkevich N, Usanov SA, Park HW (2010) Structural basis of human CYP51 inhibition by antifungal azoles. J Mol Biol 397(4):1067–1078Google Scholar
  184. 184.
    Monk BC et al (2014) Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer. Proc Natl Acad Sci U S A 111(10):3865–3870Google Scholar
  185. 185.
    Podust LM, Poulos TL, Waterman MR (2001) Crystal structure of cytochrome P450 14alpha -sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc Natl Acad Sci U S A 98(6):3068–3073Google Scholar
  186. 186.
    Alvarez-Rueda N et al (2011) Amino acid substitutions at the major insertion loop of Candida albicans sterol 14alpha-demethylase are involved in fluconazole resistance. PLoS One 6(6):e21239Google Scholar
  187. 187.
    Lepesheva GI, Waterman MR (2007) Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim Biophys Acta 1770(3):467–477Google Scholar
  188. 188.
    Zarn JA, Bruschweiler BJ, Schlatter JR (2003) Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14 alpha-demethylase and aromatase. Environ Health Perspect 111(3):255–261Google Scholar
  189. 189.
    Masubuchi Y, Horie T (2007) Toxicological significance of mechanism-based inactivation of cytochrome p450 enzymes by drugs. Crit Rev Toxicol 37(5):389–412Google Scholar
  190. 190.
    Taxvig C et al (2008) Endocrine-disrupting properties in vivo of widely used azole fungicides. Int J Androl 31(2):170–177Google Scholar
  191. 191.
    Sanderson JT (2006) The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicol Sci 94(1):3–21Google Scholar
  192. 192.
    Korashy HM et al (2007) Induction of cytochrome P450 1A1 by ketoconazole and itraconazole but not fluconazole in murine and human hepatoma cell lines. Toxicol Sci 97(1):32–43Google Scholar
  193. 193.
    Nesnow S, Padgett WT, Moore T (2011) Propiconazole induces alterations in the hepatic metabolome of mice: relevance to propiconazole-induced hepatocarcinogenesis. Toxicol Sci 120(2):297–309Google Scholar
  194. 194.
    Babin M et al (2005) Cytochrome P4501A induction caused by the imidazole derivative Prochloraz in a rainbow trout cell line. Toxicol In Vitro 19(7):899–902Google Scholar
  195. 195.
    Hasselberg L et al (2005) Interactions between xenoestrogens and ketoconazole on hepatic CYP1A and CYP3A, in juvenile Atlantic cod (Gadus morhua). Comp Hepatol 4(1):2Google Scholar
  196. 196.
    Pikuleva IA, Waterman MR (2013) Cytochromes p450: roles in diseases. J Biol Chem 288(24):17091–17098Google Scholar
  197. 197.
    Thompson DF, Carter JR (1993) Drug-induced gynecomastia. Pharmacotherapy 13(1):37–45Google Scholar
  198. 198.
    Shafaati M et al (2010) The antifungal drug voriconazole is an efficient inhibitor of brain cholesterol 24S-hydroxylase in vitro and in vivo. J Lipid Res 51(2):318–323Google Scholar
  199. 199.
    Mast N et al (2013) Antifungal azoles: structural insights into undesired tight binding to cholesterol-metabolizing CYP46A1. Mol Pharmacol 84(1):86–94Google Scholar
  200. 200.
    Verweij PE et al (2009) Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect Dis 9(12):789–795Google Scholar
  201. 201.
    Snelders E et al (2012) Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS One 7(3):e31801Google Scholar
  202. 202.
    Snelders E et al (2009) Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles. Appl Environ Microbiol 75(12):4053–4057Google Scholar
  203. 203.
    Nucci M, Anaissie E (2007) Fusarium infections in immunocompromised patients. Clin Microbiol Rev 20(4):695–704Google Scholar
  204. 204.
    Fan J et al (2013) The Y123H substitution perturbs FvCYP51B function and confers prochloraz resistance in laboratory mutants of Fusarium verticillioides. Plant Pathol 198(3):821–835Google Scholar
  205. 205.
    Dallet M, OSPAR Commission (2013) Background document on clotrimazole (2013 update). LondonGoogle Scholar
  206. 206.
    Ishii H et al (2001) Occurrence and molecular characterization of strobilurin resistance in cucumber powdery mildew and downy mildew. Phytopathology 91(12):1166–1171Google Scholar
  207. 207.
    Walker LA, Gow NAR, Munro CA (2010) Fungal echinocandin resistance. Fungal Genet Biol 47(2):117–126Google Scholar
  208. 208.
    Torriani SF et al (2009) QoI resistance emerged independently at least 4 times in European populations of Mycosphaerella graminicola. Pest Manag Sci 65(2):155–162Google Scholar
  209. 209.
    Podust LM et al (2007) Small-molecule scaffolds for CYP51 inhibitors identified by high-throughput screening and defined by X-ray crystallography. Antimicrob Agents Chemother 51(11):3915–3923Google Scholar
  210. 210.
    Doyle PS et al (2010) A nonazole CYP51 inhibitor cures Chagas’ disease in a mouse model of acute infection. Antimicrob Agents Chemother 54(6):2480–2488Google Scholar
  211. 211.
    Ekins S et al (2007) Three-dimensional quantitative structure-activity relationship analysis of human CYP51 inhibitors. Drug Metab Dispos 35(3):493–500Google Scholar
  212. 212.
    Konkle ME et al (2009) Indomethacin amides as a novel molecular scaffold for targeting Trypanosoma cruzi sterol 14alpha-demethylase. J Med Chem 52(9):2846–2853Google Scholar
  213. 213.
    Korosec T et al (2008) Novel cholesterol biosynthesis inhibitors targeting human lanosterol 14alpha-demethylase (CYP51). Bioorg Med Chem 16(1):209–221Google Scholar
  214. 214.
    Podust LM et al (2009) Interaction of Mycobacterium tuberculosis CYP130 with heterocyclic arylamines. J Biol Chem 284(37):25211–25219Google Scholar
  215. 215.
    Morton V, Staub T (2008) A short history of fungicides. Online APSnet FeaturesGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Josie E. Parker
    • 1
  • Andrew G. S. Warrilow
    • 1
  • Claire L. Price
    • 1
  • Jonathan G. L. Mullins
    • 1
  • Diane E. Kelly
    • 1
  • Steven L. Kelly
    • 1
  1. 1.Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of MedicineSwansea UniversitySwanseaUK

Personalised recommendations