Journal of Chemical Biology

, Volume 8, Issue 1, pp 1–3 | Cite as

The physical influence of inositides—a disproportionate effect?

  • Samuel Furse
Opinion Paper


After the initial observation that lipids form a considerable part of biological membranes, the details of the physical role of lipids in biological systems have emerged gradually. There have been few ‘Eureka’ moments in which a class or individual lipid has appeared as a game-changing physical player. However, evidence collected in the last five years suggests that that notion may be about to change. In chemical biology studies, inositides are increasingly showing themselves to be lipids that have a physical influence on membrane systems that is as strong as their biological (signalling) one. Additionally, recent evidence has shown that the concentration of at least one inositide changes during important stages of the cell cycle, and not in a manner consistent with its traditional signalling roles. The balance between these data is explored and a forward-looking view is proposed.


Inositides Lipid phase behaviour Lipid biophysics 


  1. 1.
    Berridge MJ (1987) Annu Rev Biochem 56:159–193CrossRefGoogle Scholar
  2. 2.
    Wenk MR, Lucast L, Di Paolo G, Romanelli AJ, Suchy SF, Nussbaum RL, Cline GW, Shulman GI, McMurray W, De Camilli P (2003) Nat Biotechnol 21:813–817CrossRefGoogle Scholar
  3. 3.
    Sekar MC, Hokin LE (1986) J Membr Biol 89:193–210CrossRefGoogle Scholar
  4. 4.
    Haylock-Jacobs S, Comerford I, Bunting M, Kara E, Townley S, Klingler-Hoffmann M, Vanhaesebroeck B, Puri KD, McColl SR (2011) J Autoimmun 36:278–287CrossRefGoogle Scholar
  5. 5.
    Moir LM, Trian T, Ge Q, Shepherd PR, Burgess JK, Oliver BGG, Black JL (2011) J Pharmacol Exp Ther 337:557–566CrossRefGoogle Scholar
  6. 6.
    Law AJ, Wang Y, Sei Y, O’Donnell P, Piantadosi P, Papaleo F, Straub RE, Huang W, Thomas CJ, Vakkalanka R, Besterman AD, Lipska BK, Hyde TM, Harrison PJ, Kleinman JE, Weinberger DR (2012) Proc Natl Acad Sci 109:12165–12170CrossRefGoogle Scholar
  7. 7.
    Fransson S, Uv A, Eriksson H, Andersson MK, Wettergren Y, Bergo M, Ejeskar K (2012) Oncogene 31:3277–3286CrossRefGoogle Scholar
  8. 8.
    Vanhaesebroeck B, Welham MJ, Kotani K, Stein R, Warne PH, Zvelebil MJ, Higashi K, Volinia S, Downward J, Waterfield MD (1997) Proc Natl Acad Sci 94:4330–4335CrossRefGoogle Scholar
  9. 9.
    Hardie RC, Raghu P, Moore S, Juusola M, Baines RA, Sweeney ST (2001) Neuron 30:149–159CrossRefGoogle Scholar
  10. 10.
    Zhao Y, Yan A, Feijó JA, Furutani M, Takenawa T, Hwang I, Fu Y, Yang Z (2010) Plant Cell Online 22:4031–4044CrossRefGoogle Scholar
  11. 11.
    DeCamilli P, Emr SD, McPherson PS, Novick P (1996) Science 271:1533–1539CrossRefGoogle Scholar
  12. 12.
    Wenk MR, De Camilli P (2004) Proc Natl Acad Sci U S A 101:8262–8269CrossRefGoogle Scholar
  13. 13.
    Milosevic I, Giovedi S, Lou X, Raimondi A, Collesi C, Shen H, Paradise S, O’Toole E, Ferguson S, Cremona O, De Camilli P (2011) Neuron 72:587–601CrossRefGoogle Scholar
  14. 14.
    Zoncu R, Perera RM, Sebastian R, Nakatsu F, Chen H, Balla T, Ayala G, Toomre D, De Camilli PV (2007) Proc Natl Acad Sci 104:3793–3798CrossRefGoogle Scholar
  15. 15.
    Di Paolo G, De Camilli P (2006) Nature 443:651–657CrossRefGoogle Scholar
  16. 16.
    Dumas F, Byrne RD, Vincent B, Hobday TMC, Poccia DL, Larijani B (2010) PLoS ONE 5:e12208CrossRefGoogle Scholar
  17. 17.
    Zhao Y, Yan A, Feijo JA, Furutani M, Takenawa T, Hwang I, Fu Y, Yang ZB (2010) Plant Cell 22:4031–4044CrossRefGoogle Scholar
  18. 18.
    Furse S, Brooks NJ, Tate EW, Seddon AM, Woscholski R, Templer RH, Gaffney PRJ, Ces O (2012) Soft Matter 8:3090–3093CrossRefGoogle Scholar
  19. 19.
    Sewell GW, Hannun YA, Han X, Koster G, Bielawski J, Goss V, Smith PJ, Rahman FZ, Vega R, Bloom SL, Walker AP, Postle AD, Segal AW (2012) Int J Biochem Cell Biol 44:1839–1846CrossRefGoogle Scholar
  20. 20.
    Mulet X, Templer RH, Woscholski R, Ces O (2008) Langmuir 24:8443–8447CrossRefGoogle Scholar
  21. 21.
    Delacroix H, GulikKrzywicki T, Seddon JM (1996) J Mol Biol 258:88–103CrossRefGoogle Scholar
  22. 22.
    Seddon JM, Zeb N, Templer RH, McElhaney RN, Mannock DA (1996) Langmuir 12:5250–5253CrossRefGoogle Scholar
  23. 23.
    Larijani B, Dufourc EJ (2006) Lipids 41:925–932CrossRefGoogle Scholar
  24. 24.
    Atilla-Gokcumen GE, Muro E, Relat-Goberna J, Sasse S, Bedigian A, Coughlin ML, Garcia-Manyes S, Eggert US (2014) Cell 156:428–439CrossRefGoogle Scholar
  25. 25.
    Furse S, Liddell S, Ortori CA, Williams H, Neylon DC, Scott DJ, Barrett DA, Gray DA (2013) J Chem Biol 6:63–76CrossRefGoogle Scholar
  26. 26.
    Domart M-C, Hobday TMC, Peddie CJ, Chung GHC, Wang A, Yeh K, Jethwa N, Zhang Q, Wakelam MJO, Woscholski R, Byrne RD, Collinson LM, Poccia DL, Larijani B (2012) PLoS ONE 7:e51150CrossRefGoogle Scholar
  27. 27.
    Byrne RD, Applebee C, Poccia DL, Larijani B (2012) PLoS ONE 7:e40669CrossRefGoogle Scholar
  28. 28.
    Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT, Baldwin AJ, Robinson CV (2014) Nature 510:172–175CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Membrane Biochemistry and BiophysicsUniversiteit UtrechtUtrechtThe Netherlands

Personalised recommendations