Journal of Chemical Biology

, Volume 3, Issue 4, pp 157–163 | Cite as

Characterisation of the PTEN inhibitor VO-OHpic

  • Lok Hang MakEmail author
  • Ramón Vilar
  • Rudiger Woscholski
Short Communication


PTEN (phosphatase and tensin homologue deleted on chromosome 10) is a phosphatidylinositol triphosphate 3-phosphatase that counteracts phosphoinositide 3-kinases and has subsequently been implied as a valuable drug target for diabetes and cancer. Recently, we demonstrated that VO-OHpic is an extremely potent inhibitor of PTEN with nanomolar affinity in vitro and in vivo. Given the importance of this inhibitor for future drug design and development, its mode of action needed to be elucidated. It was discovered that inhibition of recombinant PTEN by VO-OHpic is fully reversible. Both K m and V max are affected by VO-OHpic, demonstrating a noncompetitive inhibition of PTEN. The inhibition constants K ic and K iu were determined to be 27 ± 6 and 45 ± 11 nM, respectively. Using the artificial phosphatase substrate 3-O-methylfluorescein phosphate (OMFP) or the physiological substrate phosphatidylinositol 3,4,5-triphosphate (PIP3) comparable parameters were obtained suggesting that OMFP is a suitable substrate for PTEN inhibition studies and PTEN drug screening.





This work was supported by the Leverhulme Trust project grant (project reference, F/07 058/AO).


  1. 1.
    Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275(5308):1943–1947CrossRefGoogle Scholar
  2. 2.
    Steck PA, Pershouse MA, Jasser SA, Yung WKA, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DHR, Tavtigian SV (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15(4):356–362CrossRefGoogle Scholar
  3. 3.
    Chalhoub N, Baker SJ (2009) PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol: Mech Dis 4(1):127–150CrossRefGoogle Scholar
  4. 4.
    Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3, 4, 5-trisphosphate. J Biol Chem 273(22):13375–13378CrossRefGoogle Scholar
  5. 5.
    Carracedo A, Pandolfi PP (2008) The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 27(41):5527–5541CrossRefGoogle Scholar
  6. 6.
    Blanco-Aparicio C, Renner O, Leal JFM, Carnero A (2007) PTEN, more than the AKT pathway. Carcinogenesis 28(7):1379–1386CrossRefGoogle Scholar
  7. 7.
    Zhao M (2007) PTEN: a promising pharmacological target to enhance epithelial wound healing. Br J Pharmacol 152(8):1141–1144CrossRefGoogle Scholar
  8. 8.
    Lai JP, Dalton JT, Knoell DL (2007) Phosphatase and tensin homologue deleted on chromosome ten (PTEN) as a molecular target in lung epithelial wound repair. Br J Pharmacol 152(8):1172–1184CrossRefGoogle Scholar
  9. 9.
    Chang N, El-Hayek YH, Gomez E, Wan Q (2007) Phosphatase PTEN in neuronal injury and brain disorders. Trends Neurosci 30(11):581–586CrossRefGoogle Scholar
  10. 10.
    Salmena L, Carracedo A, Pandolfi PP (2008) Tenets of PTEN tumor suppression. Cell 133(3):403–414CrossRefGoogle Scholar
  11. 11.
    Heyliger C, Tahiliani A, McNeill J (1985) Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science 227(4693):1474–1477CrossRefGoogle Scholar
  12. 12.
    Rumora L, Shaver A, Zanic-Grubisic T, Maysinger D (2001) Differential regulation of JNK activation and MKP-1 expression by peroxovanadium complexes. Neurochem Int 38(4):341–347CrossRefGoogle Scholar
  13. 13.
    Bevan AP, Burgess JW, Yale JF, Drake PG, Lachance D, Baquiran G, Shaver A, Posner BI (1996) In vivo insulin mimetic effects of pV compounds: role for tissue targeting in determining potency (vol 31, pg E60, 1995). Am J Physiol Endocrinol Metabol 33(6):U17–UGoogle Scholar
  14. 14.
    Schmid AC, Byrne RD, Vilar R, Woscholski R (2004) Bisperoxovanadium compounds are potent PTEN inhibitors. FEBS Lett 566(1–3):35–38CrossRefGoogle Scholar
  15. 15.
    Rickle A, Behbahani H, Ankarcrona M, Winblad B, Cowburn RF (2006) PTEN, Akt, and GSK3beta signalling in rat primary cortical neuronal cultures following tumor necrosis factor-alpha and trans-4-hydroxy-2-nonenal treatments. J Neurosci Res 84(3):596–605CrossRefGoogle Scholar
  16. 16.
    Wang XT, Pei DS, Xu J, Guan QH, Sun YF, Liu XM, Zhang GY (2007) Opposing effects of bad phosphorylation at two distinct sites by Akt1 and JNK1/2 on ischemic brain injury. Cell Signal 19(9):1844–1856CrossRefGoogle Scholar
  17. 17.
    Rosivatz E, Matthews JG, McDonald NQ, Mulet X, Ho KK, Lossi N, Schmid AC, Mirabelli M, Pomeranz KM, Erneux C, Lam EWF, Vilar R, Woscholski R (2006) A small-molecule inhibitor for phosphatase and tensin homologue deleted on chromosome 10 (PTEN). ACS Chem Biol 1(12):780–790CrossRefGoogle Scholar
  18. 18.
    Papakonstanti EA, Ridley AJ, Vanhaesebroeck B (2007) The p110 delta isoform of PI 3-kinase negatively controls RhoA and PTEN. EMBO J 26(13):3050–3061CrossRefGoogle Scholar
  19. 19.
    Alimonti A, Nardella C, Chen Z, Clohessy JG, Carracedo A, Trotman LC, Cheng K, Varmeh S, Kozma SC, Thomas G, Rosivatz E, Woscholski R, Cognetti F, Scher HI, Pandolfi PP (2010) A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J Clin Investig 120(3):681–693CrossRefGoogle Scholar
  20. 20.
    Bagossi P, Kádas J, Miklóssy G, Boross P, Weber IT, Tözsér J (2004) Development of a microtiter plate fluorescent assay for inhibition studies on the HTLV-1 and HIV-1 proteinases. J Virol Meth 119(2):87–93CrossRefGoogle Scholar
  21. 21.
    Liu Y, Kati W, Chen C-M, Tripathi R, Molla A, Kohlbrenner W (1999) Use of a fluorescence plate reader for measuring kinetic parameters with inner filter effect correction. Anal Biochem 267(2):331–335CrossRefGoogle Scholar
  22. 22.
    Nakai M, Sekiguchi F, Obata M, Ohtsuki C, Adachi Y, Sakurai H, Orvig C, Rehder D, Yano S (2005) Synthesis and insulin-mimetic activities of metal complexes with 3-hydroxypyridine-2-carboxylic acid. J Inorg Biochem 99(6):1275–1282CrossRefGoogle Scholar
  23. 23.
    Huyer G, Liu S, Kelly J, Moffat J, Payette P, Kennedy B, Tsaprailis G, Gresser MJ, Ramachandran C (1997) Mechanism of inhibition of protein–tyrosine phosphatases by vanadate and pervanadate. J Biol Chem 272(2):843–851CrossRefGoogle Scholar
  24. 24.
    Gordon JA, Tony H, Bartholomew MS (1991) [41] Use of vanadate as protein–phosphotyrosine phosphatase inhibitor. In: Methods in enzymology: Academic Press, pp 477–82Google Scholar
  25. 25.
    Peters KG, Davis MG, Howard BW, Pokross M, Rastogi V, Diven C, Greis KD, Eby-Wilkens E, Maier M, Evdokimov A, Soper S, Genbauffe F (2003) Mechanism of insulin sensitization by BMOV (bis maltolato oxo vanadium); unliganded vanadium (VO4) as the active component. J Inorg Biochem 96(2–3):321–330CrossRefGoogle Scholar
  26. 26.
    Mikalsen S-O, Kaalhus O (1998) Properties of pervanadate and permolybdate. J Biol Chem 273(16):10036–10045CrossRefGoogle Scholar
  27. 27.
    Scrivens PJ, Alaoui-Jamali MA, Giannini G, Wang T, Loignon M, Batist G, Sandor VA (2003) Cdc25A-inhibitory properties and antineoplastic activity of bisperoxovanadium analogues. Mol Cancer Ther 2(10):1053–1059Google Scholar
  28. 28.
    Margoliash E, Novogrodsky A, Schejter A (1960) Irreversible reaction of 3-amino-1:2:4-triazole and related inhibitors with the protein of catalase. Biochem J 74:339–348Google Scholar
  29. 29.
    Gottlin EB, Xu X, Epstein DM, Burke SP, Eckstein JW, Ballou DP, Dixon JE (1996) Kinetic analysis of the catalytic domain of human Cdc25B. J Biol Chem 271(44):27445–27449CrossRefGoogle Scholar
  30. 30.
    Wang W-Q, Bembenek J, Gee KR, Yu H, Charbonneau H, Zhang Z-Y (2004) Kinetic and mechanistic studies of a cell cycle protein phosphatase Cdc14. J Biol Chem 279(29):30459–30468CrossRefGoogle Scholar
  31. 31.
    Sun J-P, Wang W-Q, Yang H, Liu S, Liang F, Fedorov AA, Almo SC, Zhang Z-Y (2005) Structure and biochemical properties of PRL-1, a phosphatase implicated in cell growth, differentiation, and tumor invasion. Biochemistry 44(36):12009–12021CrossRefGoogle Scholar
  32. 32.
    Li L, Ernsting BR, Wishart MJ, Lohse DL, Dixon JE (1997) A family of putative tumor suppressors is structurally and functionally conserved in humans and yeast. J Biol Chem 272(47):29403–29406CrossRefGoogle Scholar
  33. 33.
    Johnston PA, Foster CA, Shun TY, Skoko JJ, Shinde S, Wipf P, Lazo JS (2007) Development and implementation of a 384-well homogeneous fluorescence intensity high-throughput screening assay to identify mitogen-activated protein kinase phosphatase-1 dual-specificity protein phosphatase inhibitors. Assay Drug Dev Technol 5(3):319–332CrossRefGoogle Scholar
  34. 34.
    Lee JO, Yang HJ, Georgescu MM, Di Cristofano A, Maehama T, Shi YG, Dixon JE, Pandolfi P, Pavletich NP (1999) Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99(3):323–334CrossRefGoogle Scholar
  35. 35.
    Maehama T, Taylor GS, Dixon JE (2001) PTEN and myotubularin: novel phosphoinositide phosphatases. Annu Rev Biochem 70(1):247–279CrossRefGoogle Scholar
  36. 36.
    McConnachie G, Pass I, Walker SM, Downes CP (2003) Interfacial kinetic analysis of the tumour suppressor phosphatase, PTEN: evidence for activation by anionic phospholipids. Biochem J 371:947–955CrossRefGoogle Scholar
  37. 37.
    Seale AP, de Jesus LA, Kim S-Y, Choi Y-H, Lim HB, Hwang C-S, Kim Y-S (2005) Development of an automated protein-tyrosine phosphatase 1B inhibition assay and the screening of putative insulin-enhancing vanadium(IV) and zinc(II) complexes. Biotechnol Lett 27(4):221–225CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Lok Hang Mak
    • 1
    Email author
  • Ramón Vilar
    • 2
  • Rudiger Woscholski
    • 1
  1. 1.Division of Cell and Molecular BiologyImperial College LondonLondonUK
  2. 2.Department of ChemistryImperial College LondonLondonUK

Personalised recommendations