Advertisement

Journal of Chemical Biology

, Volume 3, Issue 1, pp 19–35 | Cite as

Protein myristoylation in health and disease

  • Megan H. Wright
  • William P. Heal
  • David J. Mann
  • Edward W. TateEmail author
Review

Abstract

N-myristoylation is the attachment of a 14-carbon fatty acid, myristate, onto the N-terminal glycine residue of target proteins, catalysed by N-myristoyltransferase (NMT), a ubiquitous and essential enzyme in eukaryotes. Many of the target proteins of NMT are crucial components of signalling pathways, and myristoylation typically promotes membrane binding that is essential for proper protein localisation or biological function. NMT is a validated therapeutic target in opportunistic infections of humans by fungi or parasitic protozoa. Additionally, NMT is implicated in carcinogenesis, particularly colon cancer, where there is evidence for its upregulation in the early stages of tumour formation. However, the study of myristoylation in all organisms has until recently been hindered by a lack of techniques for detection and identification of myristoylated proteins. Here we introduce the chemistry and biology of N-myristoylation and NMT, and discuss new developments in chemical proteomic technologies that are meeting the challenge of studying this important co-translational modification in living systems.

Keywords

Post-translational modification Drug design Myristoylation Lipidation Chemical proteomics 

Notes

Acknowledgments

MHW thanks the Chemical Biology Centre, Imperial College London, for the award of a studentship. WPH is supported by a Research Project Grant from Cancer Research UK to EWT and DJM (grant C29637/A9913). EWT thanks the Biotechnology and Biological Sciences Research Council (BBSRC), UK, for the award of a David Phillips Research Fellowship (grant BB/D02014X/1).

References

  1. 1.
    Woycechowsky KJ, Raines RT (2000) Curr Opin Chem Biol 4:533–539CrossRefGoogle Scholar
  2. 2.
    Ehrmann M, Clausen T (2004) Annu Rev Genet 38:709–724CrossRefGoogle Scholar
  3. 3.
    Giglione C, Boularot A, Meinnel T (2004) Cell Mol Life Sci 61:1455–1474CrossRefGoogle Scholar
  4. 4.
    Hershko A, Ciechanover A (1998) Annu Rev Biochem 67:425–479CrossRefGoogle Scholar
  5. 5.
    Zhao J (2007) Cell Mol Life Sci 64:3017–3033CrossRefGoogle Scholar
  6. 6.
    Cheung WL, Briggs SD, Allis CD (2000) Curr Opin Cell Biol 12:326–333CrossRefGoogle Scholar
  7. 7.
    Karakozova M, Kozak M, Wong CC, Bailey AO, Yates JR 3rd, Mogilner A, Zebroski H, Kashina A (2006) Science 313:192–196CrossRefGoogle Scholar
  8. 8.
    Farazi TA, Waksman G, Gordon JI (2001) J Biol Chem 276:39501–39504CrossRefGoogle Scholar
  9. 9.
    Buglino JA, Resh MD (2008) J Biol Chem 283:22076–22088CrossRefGoogle Scholar
  10. 10.
    Paik WK, Paik DC, Kim S (2007) Trends Biochem Sci 32:146–152CrossRefGoogle Scholar
  11. 11.
    Cohen P (2000) Trends Biochem Sci 25:596–601CrossRefGoogle Scholar
  12. 12.
    Spiro RG (2002) Glycobiology 12:43R–56RCrossRefGoogle Scholar
  13. 13.
    Resh MD (2006) Nat Chem Biol 2:584–590CrossRefGoogle Scholar
  14. 14.
    Resh MD (2004) Subcell Biochem 37:217–232Google Scholar
  15. 15.
    Poole LB, Karplus PA, Claiborne A (2004) Annu Rev Pharmacol Toxicol 44:325–347CrossRefGoogle Scholar
  16. 16.
    Gordon JI, Duronio RJ, Rudnick DA, Adams SP, Gokel GW (1991) J Biol Chem 266:8647–8650Google Scholar
  17. 17.
    Boutin JA (1997) Cell Signal 9:15–35CrossRefGoogle Scholar
  18. 18.
    Wilcox C, Hu JS, Olson EN (1987) Science 238:1275–1278CrossRefGoogle Scholar
  19. 19.
    Deichaite I, Casson LP, Ling HP, Resh MD (1988) Mol Cell Biol 8:4295–4301Google Scholar
  20. 20.
    Zha J, Weiler S, Oh KJ, Wei MC, Korsmeyer SJ (2000) Science 290:1761–1765CrossRefGoogle Scholar
  21. 21.
    Resh MD (1999) Biochim Biophys Acta-Mol Cell Res 1451:1–16CrossRefGoogle Scholar
  22. 22.
    Towler DA, Adams SP, Eubanks SR, Towery DS, Jackson-Machelski E, Glaser L, Gordon JI (1987) Proc Natl Acad Sci U S A 84:2708–2712CrossRefGoogle Scholar
  23. 23.
    Lodge JK, Johnson RL, Weinberg RA, Gordon JI (1994) J Biol Chem 269:2996–3009Google Scholar
  24. 24.
    Shaw BD, Momany C, Momany M (2002) Eukaryot Cell 1:241–248CrossRefGoogle Scholar
  25. 25.
    Gunaratne RS, Sajid M, Ling IT, Tripathi R, Pachebat JA, Holder AA (2000) Biochem J 348(Pt 2):459–463CrossRefGoogle Scholar
  26. 26.
    Panethymitaki C, Bowyer PW, Price HP, Leatherbarrow RJ, Brown KA, Smith DF (2006) Biochem J 396:277–285CrossRefGoogle Scholar
  27. 27.
    Ntwasa M, Aapies S, Schiffmann DA, Gay NJ (2001) Exp Cell Res 262:134–144CrossRefGoogle Scholar
  28. 28.
    Boisson B, Giglione C, Meinnel T (2003) J Biol Chem 278:43418–43429CrossRefGoogle Scholar
  29. 29.
    Duronio RJ, Towler DA, Heuckeroth RO, Gordon JI (1989) Science 243:796–800CrossRefGoogle Scholar
  30. 30.
    Weinberg RA, McWherter CA, Freeman SK, Wood DC, Gordon JI, Lee SC (1995) Mol Microbiol 16:241–250CrossRefGoogle Scholar
  31. 31.
    Lodge JK, Jackson-Machelski E, Toffaletti DL, Perfect JR, Gordon JI (1994) Proc Natl Acad Sci U S A 91:12008–12012CrossRefGoogle Scholar
  32. 32.
    Price HP, Menon MR, Panethymitaki C, Goulding D, McKean PG, Smith DF (2003) J Biol Chem 278:7206–7214CrossRefGoogle Scholar
  33. 33.
    Yang SH, Shrivastav A, Kosinski C, Sharma RK, Chen M-H, Berthiaume LG, Peters LL, Chuang P-T, Young SG, Bergo MO (2005) J Biol Chem 280:18990–18995CrossRefGoogle Scholar
  34. 34.
    Rudnick DA, McWherter CA, Rocque WJ, Lennon PJ, Getman DP, Gordon JI (1991) J Biol Chem 266:9732–9739Google Scholar
  35. 35.
    Rocque WJ, Mcwherter CA, Wood DC, Gordon JI (1993) J Biol Chem 268:9964–9971Google Scholar
  36. 36.
    Peseckis SM, Resh MD (1994) J Biol Chem 269:30888–30892Google Scholar
  37. 37.
    Zhang L, Jackson-Machelski E, Gordon JI (1996) J Biol Chem 271:33131–33140CrossRefGoogle Scholar
  38. 38.
    Weston SA, Camble R, Colls J, Rosenbrock G, Taylor I, Egerton M, Tucker AD, Tunnicliffe A, Mistry A, Mancia F, de la Fortelle E, Irwin J, Bricogne G, Pauptit RA (1998) Nat Struct Biol 5:213–221CrossRefGoogle Scholar
  39. 39.
    Bhatnagar RS, Futterer K, Farazi TA, Korolev S, Murray CL, Jackson-Machelski E, Gokel GW, Gordon JI, Waksman G (1998) Nat Struct Mol Biol 5:1091–1097CrossRefGoogle Scholar
  40. 40.
    Farazi TA, Waksman G, Gordon JI (2001) Biochem 40:6335–6343CrossRefGoogle Scholar
  41. 41.
    Sogabe S, Masubuchi M, Sakata K, Fukami TA, Morikami K, Shiratori Y, Ebiike H, Kawasaki K, Aoki Y, Shimma N, D’Arcy A, Winkler FK, Banner DW, Ohtsuka T (2002) Chem Biol 9:1119–1128CrossRefGoogle Scholar
  42. 42.
    Wu J, Tao Y, Zhang M, Howard MH, Gutteridge S, Ding J (2007) J Biol Chem 282:22185–22194CrossRefGoogle Scholar
  43. 43.
    Rioux V, Legrand P (2007) Curr Opin Clin Nutr Metab Care 10:752–758CrossRefGoogle Scholar
  44. 44.
    Farazi TA, Manchester JK, Waksman G, Gordon JI (2001) Biochem 40:9177–9186CrossRefGoogle Scholar
  45. 45.
    Farazi TA, Manchester JK, Gordon JI (2000) Biochem 39:15807–15816CrossRefGoogle Scholar
  46. 46.
    Heuckeroth RO, Glaser L, Gordon JI (1988) Proc Natl Acad Sci U S A 85:8795–8799CrossRefGoogle Scholar
  47. 47.
    Heuckeroth RO, Jackson-Machelski E, Adams SP, Kishore NS, Huhn M, Katoh A, Lu T, Gokel GW, Gordon JI (1990) J Lipid Res 31:1121–1129Google Scholar
  48. 48.
    Kishore NS, Lu TB, Knoll LJ, Katoh A, Rudnick DA, Mehta PP, Devadas B, Huhn M, Atwood JL, Adams SP et al (1991) J Biol Chem 266:8835–8855Google Scholar
  49. 49.
    Devadas B, Lu T, Katoh A, Kishore NS, Wade AC, Mehta PP, Rudnick DA, Bryant ML, Adams SP, Li Q et al (1992) J Biol Chem 267:7224–7239Google Scholar
  50. 50.
    Lu T, Li Q, Katoh A, Hernandez J, Duffin K, Jackson-Machelski E, Knoll LJ, Gokel GW, Gordon JI (1994) J Biol Chem 269:5346–5357Google Scholar
  51. 51.
    Pasha MK, Selvakumar P, Ashakumary L, Qureshi M, Guziec FS Jr, Dimmock JR, Felsted RL, Glover CJ, Sharma RK (2004) Int J Mol Med 13:557–563Google Scholar
  52. 52.
    Bhatnagar RS, Schall OF, Jackson-Machelski E, Sikorski JA, Devadas B, Gokel GW, Gordon JI (1997) Biochem 36:6700–6708CrossRefGoogle Scholar
  53. 53.
    Kishore NS, Wood DC, Mehta PP, Wade AC, Lu T, Gokel GW, Gordon JI (1993) J Biol Chem 268:4889–4902Google Scholar
  54. 54.
    Heuckeroth RO, Towler DA, Adams SP, Glaser L, Gordon JI (1988) J Biol Chem 263:2127–2133Google Scholar
  55. 55.
    Rudnick DA, Lu TB, Jacksonmachelski E, Hernandez JC, Li Q, Gokel GW, Gordon JI (1992) Proc Natl Acad Sci U S A 89:10507–10511CrossRefGoogle Scholar
  56. 56.
    Bhatnagar RS, Jackson-Machelski E, McWherter CA, Gordon JI (1994) J Biol Chem 269:11045–11053Google Scholar
  57. 57.
    Towler DA, Eubanks SR, Towery DS, Adams SP, Glaser L (1987) J Biol Chem 262:1030–1036Google Scholar
  58. 58.
    Towler DA, Gordon JI, Adams SP, Glaser L (1988) Annu Rev Biochem 57:69–97CrossRefGoogle Scholar
  59. 59.
    Maurer-Stroh S, Eisenhaber B, Eisenhaber F (2002) J Mol Biol 317:523–540CrossRefGoogle Scholar
  60. 60.
    Maurer-Stroh S, Eisenhaber B, Eisenhaber F (2002) J Mol Biol 317:541–557CrossRefGoogle Scholar
  61. 61.
    Raju RV, Magnuson BA, Sharma RK (1995) Mol Cell Biochem 149–150:191–202CrossRefGoogle Scholar
  62. 62.
    Duronio RJ, Rudnick DA, Adams SP, Towler DA, Gordon JI (1991) J Biol Chem 266:10498–10504Google Scholar
  63. 63.
    Giang DK, Cravatt BF (1998) J Biol Chem 273:6595–6598CrossRefGoogle Scholar
  64. 64.
    Rioux V, Beauchamp E, Pedrono F, Daval S, Molle D, Catheline D, Legrand P (2006) Mol Cell Biochem 286:161–170CrossRefGoogle Scholar
  65. 65.
    King MJ, Sharma RK (1992) Mol Cell Biochem 113:77–81CrossRefGoogle Scholar
  66. 66.
    Glover CJ, Felsted RL (1995) J Biol Chem 270:23226–23233CrossRefGoogle Scholar
  67. 67.
    McIlhinney RA, Young K, Egerton M, Camble R, White A, Soloviev M (1998) Biochem J 333(Pt 3):491–495Google Scholar
  68. 68.
    Glover CJ, Hartman KD, Felsted RL (1997) J Biol Chem 272:28680–28689CrossRefGoogle Scholar
  69. 69.
    DeMar JC, Rundle DR, Wensel TG, Anderson RE (1999) Prog Lipid Res 38:49–89CrossRefGoogle Scholar
  70. 70.
    Rundle DR, Rajala RVS, Anderson RE (2002) Exp Eye Res 75:87–97CrossRefGoogle Scholar
  71. 71.
    Rundle DR, Rajala RV, Alvarez RA, Anderson RE (2004) Mol Vis 10:177–185Google Scholar
  72. 72.
    Johnson DR, Bhatnagar RS, Knoll LJ, Gordon JI (1994) Annu Rev Biochem 63:869–914CrossRefGoogle Scholar
  73. 73.
    Peitzsch RM, McLaughlin S (1993) Biochem 32:10436–10443CrossRefGoogle Scholar
  74. 74.
    Berthiaume L, Resh MD (1995) J Biol Chem 270:22399–22405CrossRefGoogle Scholar
  75. 75.
    Das AK, Dasgupta B, Bhattacharya R, Basu J (1997) J Biol Chem 272:11021–11025CrossRefGoogle Scholar
  76. 76.
    King MJ, Sharma RK (1993) Biochem J 291:635–639Google Scholar
  77. 77.
    King MJ, Sharma RK (1994) Mol Cell Biochem 141:79–86CrossRefGoogle Scholar
  78. 78.
    Selvakumar P, Lakshmikuttyamma A, Pasha MK, King MJ, Olson DJH, Mori S, Ross ARS, Hayashi K, Dimmock JR, Sharma RK (2004) J Cell Biochem 92:573–578CrossRefGoogle Scholar
  79. 79.
    McIlhinney RA, McGlone K (1990) Biochem J 271:681–685Google Scholar
  80. 80.
    Manenti S, Sorokine O, Van Dorsselaer A, Taniguchi H (1994) J Biol Chem 269:8309–8313Google Scholar
  81. 81.
    Braun T, McIlhinney RA, Vergeres G (2000) Biochimie 82:705–715CrossRefGoogle Scholar
  82. 82.
    Raju RV, Kakkar R, Datla RS, Radhi J, Sharma RK (1998) Exp Cell Res 241:23–35CrossRefGoogle Scholar
  83. 83.
    Selvakumar P, Smith-Windsor E, Bonham K, Sharma RK (2006) FEBS Lett 580:2021–2026CrossRefGoogle Scholar
  84. 84.
    Raju RVS, Sharma RK (1996) Mol Cell Biochem 158:107–113CrossRefGoogle Scholar
  85. 85.
    McIlhinney RA, Patel PB, McGlone K (1994) Eur J Biochem 222:137–146CrossRefGoogle Scholar
  86. 86.
    Selvakumar P, Sharma RK (2006) Can J Physiol Pharmacol 84:707–712CrossRefGoogle Scholar
  87. 87.
    Martinez A, Traverso JA, Valot B, Ferro M, Espagne C, Ephritikhine G, Zivy M, Giglione C, Meinnel T (2008) Proteomics 8:2809–2831CrossRefGoogle Scholar
  88. 88.
    Braam B, Verhaar MC (2007) Curr Pharm Des 13:1727–1740CrossRefGoogle Scholar
  89. 89.
    Maurer-Stroh S, Eisenhaber F (2004) Trends Microbiol 12:178–185CrossRefGoogle Scholar
  90. 90.
    Zheng J, Knighton DR, Xuong NH, Taylor SS, Sowadski JM, Ten Eyck LF (1993) Protein Sci 2:1559–1573CrossRefGoogle Scholar
  91. 91.
    Chow M, Newman JF, Filman D, Hogle JM, Rowlands DJ, Brown F (1987) Nature 327:482–486CrossRefGoogle Scholar
  92. 92.
    Simons J, Rogove A, Moscufo N, Reynolds C, Chow M (1993) J Virol 67:1734–1738Google Scholar
  93. 93.
    Colombo S, Longhi R, Alcaro S, Ortuso F, Sprocati T, Flora A, Borgese N (2005) J Cell Biol 168:735–745CrossRefGoogle Scholar
  94. 94.
    Cross FR, Garber EA, Pellman D, Hanafusa H (1984) Mol Cell Biol 4:1834–1842Google Scholar
  95. 95.
    Sigal CT, Zhou W, Buser CA, McLaughlin S, Resh MD (1994) Proc Natl Acad Sci U S A 91:12253–12257CrossRefGoogle Scholar
  96. 96.
    Zhou W, Parent LJ, Wills JW, Resh MD (1994) J Virol 68:2556–2569Google Scholar
  97. 97.
    Swierczynski SL, Blackshear PJ (1996) J Biol Chem 271:23424–23430CrossRefGoogle Scholar
  98. 98.
    Goldberg J (1998) Cell 95:237–248CrossRefGoogle Scholar
  99. 99.
    McLaughlin S, Aderem A (1995) Trends Biochem Sci 20:272–276CrossRefGoogle Scholar
  100. 100.
    Mishkind M (2001) Trends Cell Biol 11:191CrossRefGoogle Scholar
  101. 101.
    Wyllie AH (1997) Br Med Bull 53:451–465Google Scholar
  102. 102.
    Simon GM, Dix MM, Cravatt BF (2009) ACS Chem Biol 4:401–408CrossRefGoogle Scholar
  103. 103.
    Utsumi T, Sakurai N, Nakano K, Ishisaka R (2003) FEBS Lett 539:37–44CrossRefGoogle Scholar
  104. 104.
    Sakurai N, Utsumi T (2006) J Biol Chem 281:14288–14295CrossRefGoogle Scholar
  105. 105.
    Vilas GL, Corvi MM, Plummer GJ, Seime AM, Lambkin GR, Berthiaume LG (2006) Proc Natl Acad Sci U S A 103:6542–6547CrossRefGoogle Scholar
  106. 106.
    Martin DD, Vilas GL, Prescher JA, Rajaiah G, Falck JR, Bertozzi CR, Berthiaume LG (2008) FASEB J 22:797–806CrossRefGoogle Scholar
  107. 107.
    Ducker CE, Upson JJ, French KJ, Smith CD (2005) Mol Cancer Res 3:463–476CrossRefGoogle Scholar
  108. 108.
    Felsted RL, Glover CJ, Hartman K (1995) J Natl Cancer Inst 87:1571–1573CrossRefGoogle Scholar
  109. 109.
    Owa T, Yoshino H, Yoshimatsu K, Nagasu T (2001) Curr Med Chem 8:1487–1503Google Scholar
  110. 110.
    Devadas B, Zupec ME, Freeman SK, Brown DL, Nagarajan S, Sikorski JA, McWherter CA, Getman DP, Gordon JI (1995) J Med Chem 38:1837–1840CrossRefGoogle Scholar
  111. 111.
    Nagarajan SR, Devadas B, Zupec ME, Freeman SK, Brown DL, Lu HF, Mehta PP, Kishore NS, McWherter CA, Getman DP, Gordon JI, Sikorski JA (1997) J Med Chem 40:1422–1438CrossRefGoogle Scholar
  112. 112.
    Lodge JK, Jackson-Machelski E, Higgins M, McWherter CA, Sikorski JA, Devadas B, Gordon JI (1998) J Biol Chem 273:12482–12491CrossRefGoogle Scholar
  113. 113.
    Bowyer PW, Tate EW, Leatherbarrow RJ, Holder AA, Smith DF, Brown KA (2008) Chem Med Chem 3:402–408Google Scholar
  114. 114.
    Bowyer PW, Gunaratne RS, Grainger M, Withers-Martinez C, Wickramsinghe SR, Tate EW, Leatherbarrow RJ, Brown KA, Holder AA, Smith DF (2007) Biochem J 408:173–180CrossRefGoogle Scholar
  115. 115.
    Furuishi K, Matsuoka H, Takama M, Takahashi I, Misumi S, Shoji S (1997) Biochem Biophys Res Commun 237:504–511CrossRefGoogle Scholar
  116. 116.
    Seaton KE, Smith CD (2008) J Gen Virol 89:288–296CrossRefGoogle Scholar
  117. 117.
    Takamune N, Gota K, Misumi S, Tanaka K, Okinaka S, Shoji S (2008) Microbes Infect 10:143–150CrossRefGoogle Scholar
  118. 118.
    Hill BT, Skowronski J (2005) J Virol 79:1133–1141CrossRefGoogle Scholar
  119. 119.
    Magnuson BA, Raju RVS, Moyana TN, Sharma RK (1995) J Natl Cancer Inst 87:1630–1635CrossRefGoogle Scholar
  120. 120.
    Raju RVS, Moyana TN, Sharma RK (1997) Exp Cell Res 235:145–154CrossRefGoogle Scholar
  121. 121.
    Rajala RV, Radhi JM, Kakkar R, Datla RS, Sharma RK (2000) Cancer 88:1992–1999CrossRefGoogle Scholar
  122. 122.
    Shrivastav A, Sharma AR, Bajaj G, Charavaryamath C, Ezzat W, Spafford P, Gore-Hickman R, Singh B, Copete MA, Sharma RK (2007) Oncol Rep 18:93–97Google Scholar
  123. 123.
    Lu Y, Selvakumar P, Ali K, Shrivastav A, Bajaj G, Resch L, Griebel R, Fourney D, Meguro K, Sharma RK (2005) Neurochem Res 30:9–13CrossRefGoogle Scholar
  124. 124.
    Clegg RA, Gordge PC, Miller WR (1999) Adv Enzyme Regul 39:175–203CrossRefGoogle Scholar
  125. 125.
    Frame MC (2002) Biochim Biophys Acta 1602:114–130Google Scholar
  126. 126.
    Wilson LK, Luttrell DK, Parsons JT, Parsons SJ (1989) Mol Cell Biol 9:1536–1544Google Scholar
  127. 127.
    Engen JR, Wales TE, Hochrein JM, Meyn MA, Ozkan SB, Bahar I, Smithgall TE (2008) Cell Mol Life Sci 65:3058–3073CrossRefGoogle Scholar
  128. 128.
    Bagrodia S, Taylor SJ, Shalloway D (1993) Mol Cell Biol 13:1464–1470Google Scholar
  129. 129.
    Talamonti MS, Roh MS, Curley SA, Gallick GE (1993) J Clin Invest 91:53–60CrossRefGoogle Scholar
  130. 130.
    Luttrell DK, Lee A, Lansing TJ, Crosby RM, Jung KD, Willard D, Luther M, Rodriguez M, Berman J, Gilmer TM (1994) Proc Natl Acad Sci U S A 91:83–87CrossRefGoogle Scholar
  131. 131.
    Hitosugi T, Sato M, Sasaki K, Umezawa Y (2007) Cancer Res 67:8139–8148CrossRefGoogle Scholar
  132. 132.
    Ji L, Roth JA (2008) J ThoracOncol 3:327–330Google Scholar
  133. 133.
    Uno F, Sasaki J, Nishizaki M, Carboni G, Xu K, Atkinson EN, Kondo M, Minna JD, Roth JA, Ji L (2004) Cancer Res 64:2969–2976CrossRefGoogle Scholar
  134. 134.
    Resh MD (2006) Methods 40:191–197CrossRefGoogle Scholar
  135. 135.
    Tate EW (2008) J Chem Biol 1:17–26CrossRefGoogle Scholar
  136. 136.
    Drisdel RC, Green WN (2004) Biotechniques 36:276–285Google Scholar
  137. 137.
    Roth AF, Wan J, Bailey AO, Sun B, Kuchar JA, Green WN, Phinney BS, Yates Iii JR, Davis NG (2006) Cell 125:1003–1013CrossRefGoogle Scholar
  138. 138.
    Kang R, Wan J, Arstikaitis P, Takahashi H, Huang K, Bailey AO, Thompson JX, Roth AF, Drisdel RC, Mastro R, Green WN, Yates Iii JR, Davis NG, El-Husseini A (2008) Nature 456:904–909CrossRefGoogle Scholar
  139. 139.
    Heal WP, Wickramasinghe SR, Tate EW (2008) Curr Drug Discov Technol 5:200–212CrossRefGoogle Scholar
  140. 140.
    Gamblin DP, van Kasteren SI, Chalker JM, Davis BG (2008) Febs J 275:1949–1959CrossRefGoogle Scholar
  141. 141.
    Hang HC, Geutjes EJ, Grotenbreg G, Pollington AM, Bijlmakers MJ, Ploegh HL (2007) J Am Chem Soc 129:2744–2745CrossRefGoogle Scholar
  142. 142.
    Saxon E, Bertozzi CR (2000) Science 287:2007–2010CrossRefGoogle Scholar
  143. 143.
    Maja Köhn RB (2004) Angew Chem Int Ed 43:3106–3116CrossRefGoogle Scholar
  144. 144.
    Kostiuk MA, Corvi MM, Keller BO, Plummer G, Prescher JA, Hangauer MJ, Bertozzi CR, Rajaiah G, Falck JR, Berthiaume LG (2007) FASEB J 22:721–732CrossRefGoogle Scholar
  145. 145.
    Heal WP, Wickramasinghe SR, Bowyer PW, Holder AA, Smith DF, Leatherbarrow RJ, Tate EW (2008) Chem Commun 4:480–482CrossRefGoogle Scholar
  146. 146.
    Heal WP, Wickramasinghe SR, Leatherbarrow RJ, Tate EW (2008) Org Biomol Chem 6:2308–2315CrossRefGoogle Scholar
  147. 147.
    Agard NJ, Baskin JM, Prescher JA, Lo A, Bertozzi CR (2006) ACS Chem Biol 1:644–648CrossRefGoogle Scholar
  148. 148.
    Charron G, Zhang MZM, Yount JS, Wilson J, Raghavan AS, Shamir E, Hang HC (2009) J Am Chem Soc 131:4967–4975CrossRefGoogle Scholar
  149. 149.
    Martin BR, Cravatt BF (2009) Nature Methods 6:135–138CrossRefGoogle Scholar
  150. 150.
    Hannoush RN, Arenas-Ramirez N (2009) ACS Chem Biol 4:581–587CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Megan H. Wright
    • 1
    • 2
    • 3
  • William P. Heal
    • 2
    • 3
  • David J. Mann
    • 1
    • 3
  • Edward W. Tate
    • 1
    • 2
    Email author
  1. 1.Chemical Biology CentreImperial College LondonLondonUK
  2. 2.Department of ChemistryImperial College LondonLondonUK
  3. 3.Department of Life SciencesImperial College LondonLondonUK

Personalised recommendations