Journal of Chemical Biology

, Volume 2, Issue 3, pp 131–151

Measuring and interpreting the selectivity of protein kinase inhibitors



Protein kinase inhibitors are a well-established class of clinically useful drugs, particularly for the treatment of cancer. Achieving inhibitor selectivity for particular protein kinases often remains a significant challenge in the development of new small molecules as drugs or as tools for chemical biology research. This review summarises the methodologies available for measuring kinase inhibitor selectivity, both in vitro and in cells. The interpretation of kinase inhibitor selectivity data is discussed, particularly with reference to the structural biology of the protein targets. Measurement and prediction of kinase inhibitor selectivity will be important for the development of new multi-targeted kinase inhibitors.


Protein kinase Selectivity Specificity Polypharmacology 


  1. 1.
    Akritopoulou-Zanze I, Hajduk PJ (2009) Kinase-targeted libraries: The design and synthesis of novel, potent, and selective kinase inhibitors. Drug Discov Today 14(5–6):291–297CrossRefGoogle Scholar
  2. 2.
    Allen MD, DiPilato LM, Rahdar M, Ren YR, Chong C, Liu JO, Zhang J (2006) Reading dynamic kinase activity in living cells for high-throughput screening. ACS Chem Biol 1(6):371–376CrossRefGoogle Scholar
  3. 3.
    Andersen CB, Wan Y, Chang JW, Riggs B, Lee C, Liu Y, Sessa F, Villa F, Kwiatkowski N, Suzuki M, Nallan L, Heald R, Musacchio A, Gray NS (2008) Discovery of selective aminothiazole Aurora kinase inhibitors. ACS Chem Biol 3(3):180–192CrossRefGoogle Scholar
  4. 4.
    Aoki K, Kiyokawa E, Nakamura T, Matsuda M (2008) Visualization of growth signal transduction cascades in living cells with genetically encoded probes based on Forster resonance energy transfer. Philos Trans R Soc B 363(1500):2143–2151CrossRefGoogle Scholar
  5. 5.
    Apsel B, Blair JA, Gonzalez B, Nazif TM, Feldman ME, Aizenstein B, Hoffman R, Williams RL, Shokat KM, Knight ZA (2008) Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat Chem Biol 4(11):691–699CrossRefGoogle Scholar
  6. 6.
    Arienti KL, Brunmark A, Axe FU, Mcclure K, Lee A, Blevitt J, Neff DK, Huang L, Crawford S, Pandit CR, Karlsson L, Breitenbucher JG (2005) Checkpoint kinase inhibitors: SAR and radioprotective properties of a series of 2-arylbenzimidazoles. J Med Chem 48:1873–1885CrossRefGoogle Scholar
  7. 7.
    Aronov AM, Bemis GW (2004) A minimalist approach to fragment-based ligand design using common rings and linkers: application to kinase inhibitors. Proteins 57(1):36–50CrossRefGoogle Scholar
  8. 8.
    Aronov AM, McClain B, Stuver Moody C, Murcko MA (2008) Kinase-likeness and kinase-privileged fragments: toward virtual polypharmacology. J Med Chem 51(5):1214–1222CrossRefGoogle Scholar
  9. 9.
    Aronov AM, Murcko MA (2004) Toward a pharmacophore for kinase frequent hitters. J Med Chem 47(23):5616–5619CrossRefGoogle Scholar
  10. 10.
    Arslan MA, Kutuk O, Basaga H (2006) Protein kinases as drug targets in cancer. Curr Cancer Drug Targets 6(7):623–634CrossRefGoogle Scholar
  11. 11.
    Bach S, Blondel M, Meijer L (2007) Evaluation of CDK inhibitor selectivity: from affinity chromatography to yeast genetics. In: Smith P, Yue E (eds) Inhibitors of Cyclin-Dependent Kinases as Anti-Tumor Agents. CRC, New York, pp 103–119Google Scholar
  12. 12.
    Bach S, Knockaert M, Reinhardt J, Lozach O, Schmitt S, Baratte B, Koken M, Coburn SP, Tang L, Jiang T, D-C L, Galons H, Dierick J-F, Pinna LA, Meggio F, Totzke F, Schaechtele C, Lerman AS, Carnero A, Wan Y, Gray N, Meijer L (2005) Roscovitine targets, protein kinases and pyridoxal kinase. J Biol Chem 280(35):31208–31219CrossRefGoogle Scholar
  13. 13.
    Bain J, McLauchlan H, Elliott M, Cohen P (2003) The specificities of protein kinase inhibitors: an update. Biochem J 371(1):199–204CrossRefGoogle Scholar
  14. 14.
    Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JSC, Alessi DR, Cohen P (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408(3):297–315CrossRefGoogle Scholar
  15. 15.
    Bamborough P, Drewry D, Harper G, Smith GK, Schneider K (2008) Assessment of chemical coverage of kinome space and its implications for kinase drug discovery. J Med Chem 51(24):7898–7914CrossRefGoogle Scholar
  16. 16.
    Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S, Mathieson T, Perrin J, Raida M, Rau C, Reader V, Sweetman G, Bauer A, Bouwmeester T, Hopf C, Kruse U, Neubauer G, Ramsden N, Rick J, Kuster B, Drewes G (2007) Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 25(9):1035–1044CrossRefGoogle Scholar
  17. 17.
    Barnett SF, Defeo-Jones D, Fu S, Hancock PJ, Haskell KM, Jones RE, Kahana JA, Kral AM, Leander K, Lee LL, Malinowski J, McAvoy EM, Nahas DD, Robinson RG, Huber HE (2005) Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochem J 385(2):399–408CrossRefGoogle Scholar
  18. 18.
    Beasley JR, McCoy PM, Walker TL, Dunn DA (2004) Miniaturized, ultra-high throughput screening of tyrosine kinases using homogeneous, competitive fluorescence immunoassays. Assay Drug Dev Technol 2(2):141–151CrossRefGoogle Scholar
  19. 19.
    Becker F, Murthi K, Smith C, Come J, Costa-Roldan N, Kaufmann C, Hanke U, Degenhart C, Baumann S, Wallner W, Huber A, Dedier S, Dill S, Kinsman D, Hediger M, Bockovich N, Meier-Ewert S, Kluge AF, Kley N (2004) A three-hybrid approach to scanning the proteome for targets of small molecule kinase inhibitors. Chem Biol 11(2):211–223Google Scholar
  20. 20.
    Bilanges B, Torbett N, Vanhaesebroeck B (2008) Killing two kinase families with one stone. Nat Chem Biol 4(11):648–649CrossRefGoogle Scholar
  21. 21.
    Birault V, Harris CJ, Le J, Lipkin M, Nerella R, Stevens A (2006) Bringing kinases into focus: efficient drug design through the use of chemogenomic toolkits. Curr Med Chem 13(15):1735–1748CrossRefGoogle Scholar
  22. 22.
    Blum G, Gazit A, Levitzki A (2000) Substrate competitive inhibitors of IGF-1 receptor kinase. Biochemistry 39(51):15705–15712CrossRefGoogle Scholar
  23. 23.
    Bogoyevitch MA, Fairlie DP (2007) A new paradigm for protein kinase inhibition: blocking phosphorylation without directly targeting ATP binding. Drug Discov Today 12(15&16):622–633CrossRefGoogle Scholar
  24. 24.
    Breda A, Basso LA, Santos DS, de Azevedo WF Jr (2008) Virtual screening of drugs: score functions, docking, and drug design. Curr Comput-Aided Drug Des 4(4):265–272CrossRefGoogle Scholar
  25. 25.
    Burns S, Travers J, Collins I, Rowlands MG, Newbatt Y, Thompson N, Garrett MD, Workman P, Aherne W (2006) Identification of small-molecule inhibitors of protein kinase B (PKB/AKT) in an AlphaScreen high-throughput screen. J Biomol Screen 11(7):822–827CrossRefGoogle Scholar
  26. 26.
    Caffrey DR, Lunney EA, Moshinsky DJ (2008) Prediction of specificity-determining residues for small-molecule kinase inhibitors. BMC Bioinf. 9Google Scholar
  27. 27.
    Caldwell JJ, Davies TG, Donald A, McHardy T, Rowlands MG, Aherne GW, Hunter LK, Taylor K, Ruddle R, Raynaud FI, Verdonk M, Workman P, Garrett MD, Collins I (2008) Identification of 4-(4-aminopiperidin-1-yl)-7H-pyrrolo[2, 3-d]pyrimidines as selective inhibitors of protein kinase B through fragment elaboration. J Med Chem 51(7):2147–2157CrossRefGoogle Scholar
  28. 28.
    Calleja V, Laguerre M, Parker Peter J, Larijani B (2009) Role of a novel PH-kinase domain interface in PKB/Akt regulation: structural mechanism for allosteric inhibition. PLoS Biol 7(1):e17CrossRefGoogle Scholar
  29. 29.
    Card A, Caldwell C, Min H, Lokchander B, Hualin X, Sciabola S, Kamath Ajith V, Clugston Susan L, Tschantz William R, Leyu W, Moshinsky Deborah J (2009) High-throughput biochemical kinase selectivity assays: panel development and screening applications. J Biomol Screen 14(1):31–42CrossRefGoogle Scholar
  30. 30.
    Caron PR, Mullican MD, Mashal RD, Wilson KP, Su MS, Murcko MA (2001) Chemogenomic approaches to drug discovery. Curr Opin Chem Biol 5(4):464–470CrossRefGoogle Scholar
  31. 31.
    Castanedo G, Clark K, Wang S, Tsui V, Wong M, Nicholas J, Wickramasinghe D, Marsters JJC, Sutherlin D (2006) CDK2/cyclinA inhibitors: targeting the cyclinA recruitment site with small molecules derived from peptide leads. Bioorg Med Chem Lett 16(6):1716–1720CrossRefGoogle Scholar
  32. 32.
    Chaisuparat R, Hu J, Jham BC, Knight ZA, Shokat KM, Montaner S (2008) Dual inhibition of PI3K alpha and mTOR as an alternative treatment for Kaposi's Sarcoma. Cancer Res 68(20):8361–8368CrossRefGoogle Scholar
  33. 33.
    Chen Z, Lee FY, Bhalla KN, Wu J (2006) Potent inhibition of platelet-derived growth factor-induced responses in vascular smooth muscle cells by BMS-354825 (dasatinib). Mol Pharmacol 69(5):1527–1533CrossRefGoogle Scholar
  34. 34.
    Cheng Y-C, Prusoff WH (1973) Relation between the inhibition constant (Ki) and the concentration of inhibitor which causes fifty per cent inhibition (I50) of an enzymic reaction. Biochem Pharmacol 22(23):3099–3108CrossRefGoogle Scholar
  35. 35.
    Cherry M, Williams DH (2004) Recent kinase and kinase inhibitor x-ray structures: mechanisms of inhibition and selectivity insights. Curr Med Chem 11(6):663–673CrossRefGoogle Scholar
  36. 36.
    Christensen JG (2007) A preclinical review of sunitinib, a multitargeted receptor tyrosine kinase inhibitor with anti-angiogenic and antitumour activities. Ann Oncol 18(Suppl 10):x3–10CrossRefGoogle Scholar
  37. 37.
    Cohen P (2002) Timeline: protein kinases - the major drug targets of the twenty-first century? Nat Rev Drug Discov 1(4):309–315CrossRefGoogle Scholar
  38. 38.
    Cohen P (2009) Targeting protein kinases for the development of anti-inflammatory drugs. Curr Opin Cell Biol 21(2):317–324CrossRefGoogle Scholar
  39. 39.
    Collins I, Garrett MD (2005) Targeting the cell division cycle in cancer: CDK and cell cycle checkpoint kinase inhibitors. Curr Opin Pharmacol 5(4):366–373CrossRefGoogle Scholar
  40. 40.
    Collins I, Workman P (2006) Design and development of signal transduction inhibitors for cancer treatment: experience and challenges with kinase targets. Curr Signal Transduction Ther 1(1):13–23CrossRefGoogle Scholar
  41. 41.
    Converso A, Hartingh T, Garbaccio RM, Tasber E, Rickert K, Fraley ME, Yan Y, Kreatsoulas C, Stirdivant S, Drakas B, Walsh ES, Hamilton K, Buser CA, Mao X, Abrams MT, Beck SC, Tao W, Lobell R, Sepp-Lorenzino L, Zugay-Murphy J, Sardana V, Munshi SK, Jezequel-Sur SM, Zuck PD, Hartman GD (2009) Development of thioquinazolinones, allosteric Chk1 kinase inhibitors. Bioorg Med Chem Lett 19(4):1240–1244CrossRefGoogle Scholar
  42. 42.
    Dandu R, Zulli AL, Bacon ER, Underiner T, Robinson C, Chang H, Miknyoczki S, Grobelny J, Ruggeri BA, Yang S, Albom MS, Angeles TS, Aimone LD, Hudkins RL (2008) Design and synthesis of dihydroindazolo[5, 4-a]pyrrolo[3, 4-c]carbazole oximes as potent dual inhibitors of TIE-2 and VEGF-R2 receptor tyrosine kinases. Bioorg Med Chem Lett 18(6):1916–1921CrossRefGoogle Scholar
  43. 43.
    Davies SL, Bolos J, Serradell N, Bayes M (2007) Nilotinib. Drugs Future 32(1):17–25CrossRefGoogle Scholar
  44. 44.
    Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351(1):95–105CrossRefGoogle Scholar
  45. 45.
    Davies TG, Verdonk ML, Graham B, Saalau-Bethell S, Hamlett CCF, McHardy T, Collins I, Garrett MD, Workman P, Woodhead SJ, Jhoti H, Barford D (2007) A structural comparison of inhibitor binding to PKB, PKA and PKA-PKB Chimera. J Mol Biol 367(3):882–894CrossRefGoogle Scholar
  46. 46.
    de Jonge MJA, Verweij J (2006) Multiple targeted tyrosine kinase inhibition in the clinic: all for one or one for all? Eur J Cancer 42(10):1351–1356CrossRefGoogle Scholar
  47. 47.
    Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, Heinrich MC, Tuveson DA, Singer S, Janicek M, Fletcher JA, Silverman SG, Silberman SL, Capdeville R, Kiese B, Peng B, Dimitrijevic S, Druker BJ, Corless C, Fletcher CDM, Joensuu H (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347(7):472–480CrossRefGoogle Scholar
  48. 48.
    Diaz-Mochon JJ, Tourniaire G, Bradley M (2007) Microarray platforms for enzymatic and cell-based assays. Chem Soc Rev 36(3):449–457CrossRefGoogle Scholar
  49. 49.
    Dunne J, Reardon H, Trinh V, Li E, Farinas J (2004) Comparison of on-chip and off-chip microfluidic kinase assay formats. Assay Drug Dev Technol 2(2):121–129CrossRefGoogle Scholar
  50. 50.
    Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lelias J-M, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ (2005) A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 23(3):329–336CrossRefGoogle Scholar
  51. 51.
    Fan Q-W, Knight ZA, Goldenberg DD, Yu W, Mostov KE, Stokoe D, Shokat KM, Weiss WA (2006) A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 9(5):341–349CrossRefGoogle Scholar
  52. 52.
    Fedorov O, Marsden B, Pogacic V, Rellos P, Mueller S, Bullock AN, Schwaller J, Sundstroem M, Knapp S (2007) A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proc Natl Acad Sci U S A 104(51):20523–20528CrossRefGoogle Scholar
  53. 53.
    Fedorov O, Sundstroem M, Marsden B, Knapp S (2007) Insights for the development of specific kinase inhibitors by targeted structural genomics. Drug Discov Today 12(9&10):365–372CrossRefGoogle Scholar
  54. 54.
    Fernandez A, Sanguino A, Peng Z, Ozturk E, Chen J, Crespo A, Wulf S, Shavrin A, Qin C, Ma J, Trent J, Lin Y, Han H-D, Mangala LS, Bankson JA, Gelovani J, Samarel A, Bornmann W, Sood AK, Lopez-Berestein G (2007) An anticancer C-Kit kinase inhibitor is reengineered to make it more active and less cardiotoxic. J Clin Invest 117(12):4044–4054CrossRefGoogle Scholar
  55. 55.
    Fischer PM (2004) The design of drug candidate molecules as selective inhibitors of therapeutically relevant protein kinases. Curr Med Chem 11(12):1563–1583Google Scholar
  56. 56.
    Fletcher JA, Rubin BP (2007) KIT Mutations in GIST. Curr Opin Genet Dev 17(1):3–7CrossRefGoogle Scholar
  57. 57.
    Force T, Krause DS, Van Etten RA (2007) Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer 7(5):332–344CrossRefGoogle Scholar
  58. 58.
    Ghose AK, Herbertz T, Pippin DA, Salvino JM, Mallamo JP (2008) Knowledge based prediction of ligand binding modes and rational inhibitor design for kinase drug discovery. J Med Chem 51(17):5149–5171CrossRefGoogle Scholar
  59. 59.
    Gleeson MP (2008) Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem 51(4):817–834CrossRefGoogle Scholar
  60. 60.
    Godl K, Gruss OJ, Eickhoff J, Wissing J, Blencke S, Weber M, Degen H, Brehmer D, Orfi L, Horvath Z, Keri G, Mueller S, Cotten M, Ullrich A, Daub H (2005) Proteomic characterization of the angiogenesis inhibitor SU6668 reveals multiple impacts on cellular kinase signaling. Cancer Res 65(15):6919–6926CrossRefGoogle Scholar
  61. 61.
    Goldstein DM, Gray NS, Zarrinkar PP (2008) High-throughput kinase profiling as a platform for drug discovery. Nat Rev Drug Discov 7(5):391–397CrossRefGoogle Scholar
  62. 62.
    Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293(5531):876–880CrossRefGoogle Scholar
  63. 63.
    Graczyk PP (2007) Gini Coefficient: a new way to express selectivity of kinase inhibitors against a family of kinases. J Med Chem 50(23):5773–5779CrossRefGoogle Scholar
  64. 64.
    Gribble FM, Loussouarn G, Tucker SJ, Zhao C, Nichols CG, Ashcroft FM (2000) A novel method for measurement of submembrane ATP concentration. J Biol Chem 275(39):30046–30049CrossRefGoogle Scholar
  65. 65.
    Gribbon P, Sewing A (2003) Fluorescence readouts in HTS: no gain without pain? Drug Discov. Today 8(22):1035–1043Google Scholar
  66. 66.
    Harris CJ, Stevens AP (2006) Chemogenomics: structuring the drug discovery process to gene families. Drug Discov Today 11(19-20):880–888CrossRefGoogle Scholar
  67. 67.
    Guillard S, Clarke PA, Te Poele R, Mohri Z, Bjerke L, Valenti M, Raynaud F, Eccles SA, Workman P (2009) Molecular pharmacology of phosphatidylinositol 3-kinase inhibition in human glioma. Cell Cycle 8(3):443–453Google Scholar
  68. 68.
    Hasinoff BB, Patel D, O'Hara KA (2008) Mechanisms of myocyte cytotoxicity induced by the multiple receptor tyrosine kinase inhibitor sunitinib. Mol Pharmacol 74(6):1722–1728CrossRefGoogle Scholar
  69. 69.
    Hastie CJ, McLauchlan Hilary J, Cohen P (2006) Assay of protein kinases using radiolabeled ATP: a protocol. Nat Protoc 1(2):968–971CrossRefGoogle Scholar
  70. 70.
    Hill RJ, Dabbagh K, Phippard D, Li C, Suttmann RT, Welch M, Papp E, Song KW, K-C C, Leaffer D, Kim Y-N, Roberts RT, Zabka TS, Aud D, Dal Porto J, Manning AM, Peng SL, Goldstein DM, Wong BR (2008) Pamapimod, a novel p38 mitogen-activated protein kinase inhibitor: preclinical analysis of efficacy and selectivity. J Pharmacol Exp Ther 327(3):610–619CrossRefGoogle Scholar
  71. 71.
    Hopkins AL, Mason JS, Overington JP (2006) Can we rationally design promiscuous drugs? Curr Opin Struct Biol 16(1):127–136CrossRefGoogle Scholar
  72. 72.
    Horiuchi KY, Wang Y, Diamond SL, Ma H (2006) Microarrays for the functional analysis of the chemical-kinase interactome. J Biomol Screen 11(1):48–56CrossRefGoogle Scholar
  73. 73.
    Hubbard SR, Till JH (2000) Protein tyrosine kinase structure and function. Annu Rev Biochem 69:373–398CrossRefGoogle Scholar
  74. 74.
    Iyer GH, Taslimi P, Pazhanisamy S (2008) Staurosporine-based binding assay for testing the affinity of compounds to protein kinases. Anal Biochem 373(2):197–206CrossRefGoogle Scholar
  75. 75.
    Johnson LN, Noble MEM, Owen DJ (1996) Active and inactive protein kinases: structural basis for regulation. Cell 85(2):149–158CrossRefGoogle Scholar
  76. 76.
    Johnson M, Li C, Rasnow B, Grandsard P, Xing H, Fields A (2002) Converting a protease assay to a Caliper® format LabChip system. JALA 7(4):62–68Google Scholar
  77. 77.
    Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26(1):127–132CrossRefGoogle Scholar
  78. 78.
    Kashem MA, Nelson RM, Yingling JD, Pullen SS, Prokopowicz AS III, Jones JW, Wolak JP, Rogers GR, Morelock MM, Snow RJ, Homon CA, Jakes S (2007) Three mechanistically distinct kinase assays compared: measurement of intrinsic ATPase activity identified the most comprehensive set of ITK inhibitors. J Biomol Screen 12(1):70–83CrossRefGoogle Scholar
  79. 79.
    Kinnings SL, Jackson RM (2009) Binding site similarity analysis for the functional classification of the protein kinase family. J Chem Inf Model 49(2):318–329CrossRefGoogle Scholar
  80. 80.
    Klebl BM, Mueller G (2005) Second-generation kinase inhibitors. Expert Opin Ther Targets 9(5):975–993CrossRefGoogle Scholar
  81. 81.
    Knight ZA, Shokat KM (2005) Features of selective kinase inhibitors. Chem Biol 12(6):621–637CrossRefGoogle Scholar
  82. 82.
    Knighton DR, Zheng J, Ten Eyck LF, Ashford VA, Nguyen Huu X, Taylor SS, Sowadski JM (1991) Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253(5018):407–414CrossRefGoogle Scholar
  83. 83.
    Krishnamurty R, Maly DJ (2007) Chemical genomic and proteomic methods for determining kinase inhibitor selectivity. Comb Chem High Throughput Screen 10(8):652–666CrossRefGoogle Scholar
  84. 84.
    Krug M, Hilgeroth A (2008) Recent advances in the development of multi-kinase inhibitors. Mini-Rev Med Chem 8(13):1312–1327CrossRefGoogle Scholar
  85. 85.
    Kung C, Kenski DM, Dickerson SH, Howson RW, Kuyper LF, Madhani HD, Shokat KM (2005) Chemical genomic profiling to identify intracellular targets of a multiplex kinase inhibitor. Proc Natl Acad Sci U S A 102(10):3587–3592CrossRefGoogle Scholar
  86. 86.
    Kung C, Kenski DM, Krukenberg K, Madhani HD, Shokat KM (2006) Selective kinase inhibition by exploiting differential pathway sensitivity. Chem Biol 13(4):399–407CrossRefGoogle Scholar
  87. 87.
    Lebakken CS, Kang HC, Vogel KW (2007) A fluorescence lifetime-based binding assay to characterize kinase inhibitors. J Biomol Screen 12(6):828–841CrossRefGoogle Scholar
  88. 88.
    Lee Y-S, Mrksich M (2002) Protein chips, from concept to practice. Trends Biotechnol 20(Suppl 12):S14–S18CrossRefGoogle Scholar
  89. 89.
    Li B, Liu Y, Uno T, Gray N (2004) Creating chemical diversity to target protein kinases. Comb Chem High Throughput Screen 7(5):453–472Google Scholar
  90. 90.
    Li Y, Liang J, Siu T, Hu E, Rossi MA, Barnett SF, Defeo-Jones D, Jones RE, Robinson RG, Leander K, Huber HE, Mittal S, Cosford N, Prasit P (2009) Allosteric inhibitors of Akt1 and Akt2: discovery of [1, 2, 4]triazolo[3, 4-f][1, 6]naphthyridines with potent and balanced activity. Bioorg Med Chem Lett 19(3):834–836CrossRefGoogle Scholar
  91. 91.
    Liao JJ-L (2007) Molecular recognition of protein kinase binding pockets for design of potent and selective kinase inhibitors. J Med Chem 50(3):409–424CrossRefGoogle Scholar
  92. 92.
    Lin X, Murray JM, Rico AC, Wang MX, Chu DT, Zhou Y, Rosario MD, Kaufman S, Ma S, Fang E, Crawford K, Jefferson AB (2006) Discovery of 2-pyrimidyl-5-amidothiophenes as potent inhibitors for AKT: synthesis and SAR studies. Bioorg Med Chem Lett 16(16):4163–4168CrossRefGoogle Scholar
  93. 93.
    Lindsley CW, Zhao Z, Leister WH, Robinson RG, Barnett SF, Defeo-Jones D, Jones RE, Hartman GD, Huff JR, Huber HE, Duggan ME (2005) Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors. Bioorg Med Chem Lett 15(3):761–764CrossRefGoogle Scholar
  94. 94.
    Liu Y, Gray NS (2006) Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol 2(7):358–364CrossRefGoogle Scholar
  95. 95.
    Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K, Castaneda S, Cornelius LAM, Das J, Doweyko AM, Fairchild C, Hunt JT, Inigo I, Johnston K, Kamath A, Kan D, Klei H, Marathe P, Pang S, Peterson R, Pitt S, Schieven GL, Schmidt RJ, Tokarski J, Wen M-L, Wityak J, Borzilleri RM (2004) Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino) thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 47(27):6658–6661CrossRefGoogle Scholar
  96. 96.
    Lueking A, Cahill DJ, Müllner S (2005) Protein biochips: a new and versatile platform technology for molecular medicine. Drug Discov Today 10(11):789–794CrossRefGoogle Scholar
  97. 97.
    Ma H, Deacon S, Horiuchi K (2008) The challenge of selecting protein kinase assays for lead discovery optimization. Expert Opin Drug Discov 3(6):607–621CrossRefGoogle Scholar
  98. 98.
    Ma H, Horiuchi KY (2006) Chemical microarray: a new tool for drug screening and discovery. Drug Discov Today 11(13–14):661–668CrossRefGoogle Scholar
  99. 99.
    Ma H, Horiuchi KY, Wang Y, Kucharewicz SA, Diamond SL (2005) Nanoliter homogeneous ultra-high throughput screening microarray for lead discoveries and IC50 profiling. Assay Drug Dev Technol 3(2):177–187CrossRefGoogle Scholar
  100. 100.
    Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600): 1912-1916, 1933-1934Google Scholar
  101. 101.
    Marsden BD, Knapp S (2008) Doing more than just the structure—structural genomics in kinase drug discovery. Curr Opin Chem Biol 12(1):40–45CrossRefGoogle Scholar
  102. 102.
    McGregor MJ (2007) A pharmacophore map of small molecule protein kinase inhibitors. J Chem Inf Model 47(6):2374–2382CrossRefGoogle Scholar
  103. 103.
    Melnick JS, Janes J, Kim S, Chang JY, Sipes DG, Gunderson D, Jarnes L, Matzen JT, Garcia ME, Hood TL, Beigi R, Xia G, Harig RA, Asatryan H, Yan SF, Zhou Y, Gu X-J, Saadat A, Zhou V, King FJ, Shaw CM, Su AI, Downs R, Gray NS, Schultz PG, Warmuth M, Caldwell JS (2006) An efficient rapid system for profiling the cellular activities of molecular libraries. Proc Natl Acad Sci U S A 103(9):3153–3158CrossRefGoogle Scholar
  104. 104.
    Noble MEM, Endicott JA, Johnson LN (2004) Protein kinase inhibitors: insights into drug design from structure. Science 303(5665):1800–1805CrossRefGoogle Scholar
  105. 105.
    O'Hare T, Walters DK, Stoffregen EP, Jia T, Manley PW, Mestan J, Cowan-Jacob SW, Lee FY, Heinrich MC, Deininger MWN, Druker BJ (2005) In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res 65(11):4500–4505CrossRefGoogle Scholar
  106. 106.
    Okram B, Nagle A, Adrian FJ, Lee C, Ren P, Wang X, Sim T, Xie Y, Wang X, Xia G, Spraggon G, Warmuth M, Liu Y, Gray NS (2006) A general strategy for creating "inactive-conformation" Abl inhibitors. Chem Biol 13(7):779–786CrossRefGoogle Scholar
  107. 107.
    Olive DM (2004) Quantitative methods for the analysis of protein phosphorylation in drug development. Expert Rev Proteomics 1(3):327–341CrossRefGoogle Scholar
  108. 108.
    O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, Baselga J, Rosen N (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66(3):1500–1508CrossRefGoogle Scholar
  109. 109.
    Pagano MA, Bain J, Kazimierczuk Z, Sarno S, Ruzzene M, Di Maira G, Elliott M, Orzeszko A, Cozza G, Meggio F, Pinna LA (2008) The selectivity of inhibitors of protein kinase CK2: an update. Biochem J 415(3):353–365CrossRefGoogle Scholar
  110. 110.
    Park S, Chapuis N, Bardet V, Tamburini J, Gallay N, Willems L, Knight ZA, Shokat KM, Azar N, Viguie F, Ifrah N, Dreyfus F, Mayeux P, Lacombe C, Bouscary D (2008) PI-103, a dual inhibitor of Class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML. Leukemia 22(9):1698–1706CrossRefGoogle Scholar
  111. 111.
    Patricelli MP, Szardenings AK, Liyanage M, Nomanbhoy TK, Wu M, Weissig H, Aban A, Chun D, Tanner S, Kozarich JW (2007) Functional interrogation of the kinome using nucleotide acyl phosphates. Biochemistry 46(2):350–358CrossRefGoogle Scholar
  112. 112.
    Paul MK, Mukhopadhyay AK (2004) Tyrosine kinase - role and significance in cancer. Int J Med Sci 1(2):101–115Google Scholar
  113. 113.
    Peach ML, Tan N, Choyke SJ, Giubellino A, Athauda G, Burke TR Jr, Nicklaus MC, Bottaro DP (2009) Directed discovery of agents targeting the Met tyrosine kinase domain by virtual screening. J Med Chem 52(4):943–951CrossRefGoogle Scholar
  114. 114.
    Peifer C, Krasowski A, Haemmerle N, Kohlbacher O, Dannhardt G, Totzke F, Schaechtele C, Laufer S (2006) Profile and molecular modeling of 3-(indole-3-yl)-4-(3, 4, 5-trimethoxyphenyl)-1 H-pyrrole-2, 5-dione (I) as a highly selective VEGF-R2/3 iInhibitor. J Med Chem 49(25):7549–7553CrossRefGoogle Scholar
  115. 115.
    Perrin D, Fremaux C, Scheer A (2006) Assay development and screening of a serine/threonine kinase in an on-chip mode using caliper nanofluidics technology. J Biomol Screen 11(4):359–368CrossRefGoogle Scholar
  116. 116.
    Petrelli A, Giordano S (2008) From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr Med Chem 15(5):422–432CrossRefGoogle Scholar
  117. 117.
    Petrov KG, Zhang Y-M, Carter M, Cockerill GS, Dickerson S, Gauthier CA, Guo Y, Mook RA, Rusnak DW, Walker AL, Wood ER, Lackey KE (2006) Optimization and SAR for dual ErbB-1/ErbB-2 tyrosine kinase inhibition in the 6-furanylquinazoline series. Bioorg Med Chem Lett 16(17):4686–4691CrossRefGoogle Scholar
  118. 118.
    Raynaud FI, Eccles S, Clarke PA, Hayes A, Nutley B, Alix S, Henley A, Di-Stefano F, Ahmad Z, Guillard S, Bjerke LM, Kelland L, Valenti M, Patterson L, Gowan S, de Haven Brandon A, Hayakawa M, Kaizawa H, Koizumi T, Ohishi T, Patel S, Saghir N, Parker P, Waterfield M, Workman P (2007) Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res 67:5840–5850CrossRefGoogle Scholar
  119. 119.
    Rheault TR, Caferro TR, Dickerson SH, Donaldson KH, Gaul MD, Goetz AS, Mullin RJ, McDonald OB, Petrov KG, Rusnak DW, Shewchuk LM, Spehar GM, Truesdale AT, Vanderwall DE, Wood ER, Uehling DE (2009) Thienopyrimidine-based dual EGFR/ErbB-2 inhibitors. Bioorg Med Chem Lett 19(3):817–820CrossRefGoogle Scholar
  120. 120.
    Rodems SM, Hamman BD, Lin C, Zhao J, Shah S, Heidary D, Makings L, Stack JH, Pollok BA (2002) A FRET-based assay platform for ultra-high density drug screening of protein kinases and phosphatases. Assay Drug Dev Technol 1(1 Pt 1):9–19CrossRefGoogle Scholar
  121. 121.
    Ross H, Armstrong CG, Cohen P (2002) A non-radioactive method for the assay of many serine/threonine-specific protein kinases. Biochem J 366(3):977–981Google Scholar
  122. 122.
    Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169CrossRefGoogle Scholar
  123. 123.
    Rusnak DW, Affleck K, Cockerill SG, Stubberfield C, Harris R, Page M, Smith KJ, Guntrip SB, Carter MC, Shaw RJ, Jowett A, Stables J, Topley P, Wood ER, Brignola PS, Kadwell SH, Reep BR, Mullin RJ, Alligood KJ, Keith BR, Crosby RM, Murray DM, Knight WB, Gilmer TM, Lackey K (2001) The characterization of novel, dual ErbB-2/EGFR, tyrosine kinase inhibitors: potential therapy for cancer. Cancer Res 61(19):7196–7203Google Scholar
  124. 124.
    Scapin G (2006) Protein kinase inhibition: different approaches to selective inhibitor design. Curr Drug Targets 7(11):1443–1454Google Scholar
  125. 125.
    Sciabola S, Stanton RV, Wittkopp S, Wildman S, Moshinsky D, Potluri S, Xi H (2008) Predicting kinase selectivity profiles using Free-Wilson QSAR analysis. J Chem Inf Model 48(9):1851–1867CrossRefGoogle Scholar
  126. 126.
    Seong Y-S, Min C, Li L, Yang JY, Kim S-Y, Cao X, Kim K, Yuspa SH, Chung H-H, Lee KS (2003) Characterization of a novel cyclin-dependent kinase 1 inhibitor, BMI-1026. Cancer Res 63:7384–7391Google Scholar
  127. 127.
    Sheinerman FB, Giraud E, Laoui A (2005) High affinity targets of protein kinase inhibitors have similar residues at the positions energetically important for binding. J Mol Biol 352(5):1134–1156CrossRefGoogle Scholar
  128. 128.
    Sills MA, Weiss D, Pham Q, Schweitzer R, Wu X, Wu JJ (2002) Comparison of assay technologies for a tyrosine kinase assay generates different results in high throughput screening. J Biomol Screen 7(3):191–214CrossRefGoogle Scholar
  129. 129.
    Slon-Usakiewicz JJ, Dai J-R, Ng W, Foster JE, Deretey E, Toledo-Sherman L, Redden PR, Pasternak A, Reid N (2005) Global kinase screening. Applications of frontal affinity chromatography coupled to mass spectrometry in drug discovery. Anal Chem 77(5):1268–1274CrossRefGoogle Scholar
  130. 130.
    Smaill JB, Baker EN, Booth RJ, Bridges AJ, Dickson JM, Dobrusin EM, Ivanovic I, Kraker AJ, Lee HH, Lunney EA, Ortwine DF, Palmer BD, Quin J III, Squire CJ, Thompson AM, Denny WA (2008) Synthesis and structure-activity relationships of N-6 substituted analogues of 9-hydroxy-4-phenylpyrrolo[3, 4-c]carbazole-1, 3(2H, 6H)-diones as inhibitors of Wee1 and Chk1 checkpoint kinases. Eur J Med Chem 43(6):1276–1296CrossRefGoogle Scholar
  131. 131.
    Smyth LA, Matthews TP, Collins I (2009) Kinase-directed libraries inspired by the natural product Indirubin. Abstracts of Papers, 237th ACS National Meeting, Salt Lake City, UT, United States, Mar. 22-26, 2009: ORGN - 352Google Scholar
  132. 132.
    Soverini S, Colarossi S, Gnani A, Rosti G, Castagnetti F, Poerio A, Iacobucci I, Amabile M, Abruzzese E, Orlandi E, Radaelli F, Ciccone F, Tiribelli M, di Lorenzo R, Caracciolo C, Izzo B, Pane F, Saglio G, Baccarani M, Martinelli G (2006) Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive Patients: by the GIMEMA working party on chronic myeloid leukemia. Clin Cancer Res 12(24):7374–7379CrossRefGoogle Scholar
  133. 133.
    Taylor RD, Bailey S. "Small molecule oral kinase inhibitor in oncology – UCB datasheet." from
  134. 134.
    Tecle H, Shao J, Li Y, Kothe M, Kazmirski S, Penzotti J, Ding Y-H, Ohren J, Moshinsky D, Coli R, Jhawar N, Bora E, Jacques-O'Hagan S, Wu J (2009) Beyond the MEK-pocket: can current MEK kinase inhibitors be utilized to synthesize novel type III NCKIs? Does the MEK-pocket exist in kinases other than MEK? Bioorg Med Chem Lett 19(1):226–229CrossRefGoogle Scholar
  135. 135.
    Traut TW (1994) Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 140(1):1–22CrossRefGoogle Scholar
  136. 136.
    Traxler P, Furet P (1999) Strategies toward the design of novel and selective protein tyrosine kinase inhibitors. Pharmacol Ther 82(2–3):195–206CrossRefGoogle Scholar
  137. 137.
    Turk BE (2005) Measuring kinase activity: finding needles in a haystack. Nat Methods 2(4):251–252CrossRefGoogle Scholar
  138. 138.
    Vieth M, Sutherland JJ, Robertson DH, Campbell RM (2005) Kinomics: characterizing the therapeutically validated kinase space. Drug Discov Today 10(12):839–846CrossRefGoogle Scholar
  139. 139.
    Waterson AG, Petrov KG, Hornberger KR, Hubbard RD, Sammond DM, Smith SC, Dickson HD, Caferro TR, Hinkle KW, Stevens KL, Dickerson SH, Rusnak DW, Spehar GM, Wood ER, Griffin RJ, Uehling DE (2009) Synthesis and evaluation of aniline headgroups for alkynyl thienopyrimidine dual EGFR/ErbB-2 kinase inhibitors. Bioorg Med Chem Lett 19(5):1332–1336CrossRefGoogle Scholar
  140. 140.
    Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, Schwartz B, Simantov R, Kelley S (2006) Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 5(10):835–844CrossRefGoogle Scholar
  141. 141.
    Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 7(10):3129–3140CrossRefGoogle Scholar
  142. 142.
    Xia W, Mullin RJ, Keith BR, Liu L-H, Ma H, Rusnak DW, Owens G, Alligood KJ, Spector NL (2002) Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene 21(41):6255–6263CrossRefGoogle Scholar
  143. 143.
    Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9(1):28–39CrossRefGoogle Scholar
  144. 144.
    Zhang X, Crespo A, Fernandez A (2008) Turning promiscuous kinase inhibitors into safer drugs. Trends Biotechnol 26(6):295–301CrossRefGoogle Scholar
  145. 145.
    Zhang Z, Meier KE (2006) New assignments for multitasking signal transduction inhibitors. Mol Pharmacol 69(5):1510–1512CrossRefGoogle Scholar
  146. 146.
    Zhu H, Snyder M (2003) Protein chip technology. Curr Opin Chem Biol 7(1):55–63CrossRefGoogle Scholar
  147. 147.
    Zieske LR (2006) A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. J Exp Bot 57(7):1501–1508CrossRefGoogle Scholar
  148. 148.
    Peifer C, Urich R, Schattel V, Abadleh M, Roettig M, Kohlbacher O, Laufer S (2008) Implications for selectivity of 3,4- diarylquinolinones as p38alpha MAP kinase inhibitors. Bioorg Med Chem Lett 18(4):1431-1435CrossRefGoogle Scholar
  149. 149.
    Brehmer D, Greff Z, Godl K, Blencke S, Kurtenbach A, Weber M, Mueller S, Klebl B, Cotten M, Keri G, Wissing J, Daub H (2005) Cellular targets of gefitinib. Cancer Res 65(2):379-382Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Cancer Research UK Centre for Cancer TherapeuticsThe Institute of Cancer ResearchSurreyUK

Personalised recommendations