, Volume 10, Issue 3, pp 375–388 | Cite as

The Multiplicity of Memory Enhancement: Practical and Ethical Implications of the Diverse Neural Substrates Underlying Human Memory Systems

  • Kieran C. R. FoxEmail author
  • Nicholas S. Fitz
  • Peter B. Reiner
Original Paper


The neural basis of human memory is incredibly complex. We argue that the diversity of neural systems underlying various forms of memory suggests that any discussion of enhancing ‘memory’ per se is too broad, thus obfuscating the biopolitical debate about human enhancement. Memory can be differentiated into at least four major (and several minor) systems with largely dissociable (i.e., non-overlapping) neural substrates. We outline each system, and discuss both the practical and the ethical implications of these diverse neural substrates. In practice, distinct neural bases imply the possibility, and likely the necessity, of specific approaches for the safe and effective enhancement of various memory systems. In the debate over the ethical and social implications of enhancement technologies, this fine-grained perspective clarifies—and may partially mitigate—certain common concerns in enhancement debates, including issues related to safety, fairness, coercion, and authenticity. While many researchers certainly appreciate the neurobiological complexity of memory, the political debate tends to revolve around a monolithic one-size-fits-all conception. The overall project—exploring how human enhancement technologies affect society – stands to benefit from a deeper appreciation of memory’s neurobiological diversity.


Memory Cognitive enhancement Neuroethics Memory enhancement Neuroenhancement Autobiographical memory Working memory Semantic memory Procedural memory 


  1. 1.
    Pope, A. W. (1711/2008). Essay on criticism: Forgotten Books.Google Scholar
  2. 2.
    Ponds, R.W., K.J. Commissaris, and J. Jolles. 1997. Prevalence and covariates of subjective forgetfulness in a normal population in The Netherlands. The International Journal of Aging and Human Development 45(3): 207–221.CrossRefGoogle Scholar
  3. 3.
    Loftus, E.F. 2013. 25 years of eyewitness science…… finally pays off. Perspectives on Psychological Science 8(5): 556–557.CrossRefGoogle Scholar
  4. 4.
    Reitz, C., and R. Mayeux. 2014. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochemical pharmacology.Google Scholar
  5. 5.
    Schacter, D.L. 2002. The seven sins of memory: how the mind forgets and remembers: Houghton Mifflin Harcourt.Google Scholar
  6. 6.
    Bostrom, N., and A. Sandberg. 2009. Cognitive enhancement: methods, ethics, regulatory challenges. Science and Engineering Ethics 15(3): 311–341.CrossRefGoogle Scholar
  7. 7.
    Cabrera, L.Y. 2011. Memory enhancement: the issues we should not forget about. Memory 22: 1.Google Scholar
  8. 8.
    Farah, M.J., J. Illes, R. Cook-Deegan, H. Gardner, E. Kandel, P. King, and P.R. Wolpe. 2004. Neurocognitive enhancement: what can we do and what should we do? Nature Reviews Neuroscience 5(5): 421–425.CrossRefGoogle Scholar
  9. 9.
    Greely, H.T., B. Sahakian, J. Harris, R.C. Kessler, M. Gazzaniga, P. Campbell, and M.J. Farah. 2008. Towards responsible use of cognitive-enhancing drugs by the healthy. Nature 456(7223): 702–705.CrossRefGoogle Scholar
  10. 10.
    Hildt, E., and A.G. Franke. 2013. Cognitive enhancement: an interdisciplinary perspective (Vol. 1): Springer Science & Business Media.Google Scholar
  11. 11.
    Hyman, S.E. 2011. Cognitive enhancement: promises and perils. Neuron 69(4): 595–598.CrossRefGoogle Scholar
  12. 12.
    Liao, S.M., and A. Sandberg. 2008. The normativity of memory modification. Neuroethics 1(2): 85–99.CrossRefGoogle Scholar
  13. 13.
    Sandberg, A. 2011. Cognition enhancement: upgrading the brain. In J. Savulescu, R. t. Meulen & G. Kahane (Eds.), Enhancing human capacities (pp. 71–91): Wiley-Blackwell.Google Scholar
  14. 14.
    de Quervain, D.J.-F., and A. Papassotiropoulos. 2006. Identification of a genetic cluster influencing memory performance and hippocampal activity in humans. Proceedings of the National Academy of Sciences of the United States of America 103(11): 4270–4274.CrossRefGoogle Scholar
  15. 15.
    Fukuyama, F. 2003. Our posthuman future: Consequences of the biotechnology revolution: Macmillan.Google Scholar
  16. 16.
    Savulescu, J. 2006. Justice, fairness, and enhancement. Annals of the New York Academy of Sciences 1093(1): 321–338.CrossRefGoogle Scholar
  17. 17.
    Cheng, S., and M. Werning. 2016. What is episodic memory if it is a natural kind? Synthese 193(5): 1345–1385.CrossRefGoogle Scholar
  18. 18.
    Michaelian, K. 2011. Is memory a natural kind? Memory Studies 4(2): 170–189.CrossRefGoogle Scholar
  19. 19.
    Michaelian, K. 2015. Opening the doors of memory: is declarative memory a natural kind? Wiley Interdisciplinary Reviews: Cognitive Science 6(6): 475–482.Google Scholar
  20. 20.
    Rupert, R.D. 2013. Memory, natural kinds, and cognitive extension; or, Martians don’t remember, and cognitive science is not about cognition. Review of Philosophy and Psychology 4(1): 25–47.CrossRefGoogle Scholar
  21. 21.
    Cakic, V. 2009. Smart drugs for cognitive enhancement: ethical and pragmatic considerations in the era of cosmetic neurology. Journal of Medical Ethics 35(10): 611–615.CrossRefGoogle Scholar
  22. 22.
    Chatterjee, A. 2004. Cosmetic neurology the controversy over enhancing movement, mentation, and mood. Neurology 63(6): 968–974.CrossRefGoogle Scholar
  23. 23.
    Fitz, N.S., R. Nadler, P. Manogaran, E.W. Chong, and P.B. Reiner. 2014. Public attitudes toward cognitive enhancement. Neuroethics 7(2): 173–188.CrossRefGoogle Scholar
  24. 24.
    Eichenbaum, H., and N. J. Cohen. 2001. From conditioning to conscious recollection: Memory systems of the brain: Oxford University Press.Google Scholar
  25. 25.
    McDonald, R.J., and N.M. White. 1993. A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behavioral Neuroscience 107(1): 3.CrossRefGoogle Scholar
  26. 26.
    Poldrack, R.A., and M.G. Packard. 2003. Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia 41(3): 245–251.CrossRefGoogle Scholar
  27. 27.
    Squire, L.R. 2004. Memory systems of the brain: a brief history and current perspective. Neurobiology of Learning and Memory 82(3): 171–177.CrossRefGoogle Scholar
  28. 28.
    Squire, L.R., B. Knowlton, and G. Musen. 1993. The structure and organization of memory. Annual Review of Psychology 44(1): 453–495.CrossRefGoogle Scholar
  29. 29.
    Tulving, E. 1985. How many memory systems are there? American Psychologist 40(4): 385.CrossRefGoogle Scholar
  30. 30.
    Tulving, E., and D.L. Schacter. 1990. Priming and human memory systems. Science 247(4940): 301–306.CrossRefGoogle Scholar
  31. 31.
    Schacter, D.L. 1990. Perceptual representation systems and implicit memory. Annals of the New York Academy of Sciences 608(1): 543–571.CrossRefGoogle Scholar
  32. 32.
    Clark, R.E., and L.R. Squire. 1998. Classical conditioning and brain systems: the role of awareness. Science 280(5360): 77–81.CrossRefGoogle Scholar
  33. 33.
    Rankin, C.H., T. Abrams, R.J. Barry, S. Bhatnagar, D.F. Clayton, J. Colombo, and S. Marsland. 2009. Habituation revisited: an updated and revised description of the behavioral characteristics of habituation. Neurobiology of Learning and Memory 92(2): 135–138.CrossRefGoogle Scholar
  34. 34.
    Ji, R.-R., T. Kohno, K.A. Moore, and C.J. Woolf. 2003. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends in Neurosciences 26(12): 696–705.CrossRefGoogle Scholar
  35. 35.
    Baddeley, A. 1992. Working memory. Science 255(5044): 556–559.CrossRefGoogle Scholar
  36. 36.
    Baddeley, A. 2012. Working memory: theories, models, and controversies. Annual Review of Psychology 63: 1–29.CrossRefGoogle Scholar
  37. 37.
    Stanley, J., and J.W. Krakauer. 2013. Motor skill depends on knowledge of facts. Frontiers in Human Neuroscience 7(503): 1–11.Google Scholar
  38. 38.
    McGaugh, J.L. 2000. Memory--a century of consolidation. Science 287(5451): 248–251.CrossRefGoogle Scholar
  39. 39.
    Moscovitch, M., R.S. Rosenbaum, A. Gilboa, D.R. Addis, R. Westmacott, C. Grady, and G. Winocur. 2005. Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory. Journal of Anatomy 207(1): 35–66.CrossRefGoogle Scholar
  40. 40.
    Winocur, G., and M. Moscovitch. 2011. Memory transformation and systems consolidation. [Research Support, Non-U.S. Gov't]. Journal of International Neuropsychological Society 17(5): 766–780. doi: 10.1017/S1355617711000683.CrossRefGoogle Scholar
  41. 41.
    Squire, L.R., C.E. Stark, and R.E. Clark. 2004. The medial temporal lobe. Annual Review of Neuroscience 27: 279–306.CrossRefGoogle Scholar
  42. 42.
    Conway, M.A., and C.W. Pleydell-Pearce. 2000. The construction of autobiographical memories in the self-memory system. Psychological Review 107(2): 261.CrossRefGoogle Scholar
  43. 43.
    Rubin, D.C. 2006. The basic-systems model of episodic memory. Perspectives on Psychological Science 1(4): 277–311.CrossRefGoogle Scholar
  44. 44.
    Thompson, C. P., Skowronski, J. J., Larsen, S. F., and A. L. Betz. 2013. Autobiographical memory: Remembering what and remembering when: Psychology Press.Google Scholar
  45. 45.
    Milner, B., S. Corkin, and H.-L. Teuber. 1968. Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of HM. Neuropsychologia 6(3): 215–234.CrossRefGoogle Scholar
  46. 46.
    Squire, L.R. 2009. The legacy of patient HM for neuroscience. Neuron 61(1): 6–9.CrossRefGoogle Scholar
  47. 47.
    Kesner, R.P., B.L. Bolland, and M. Dakis. 1993. Memory for spatial locations, motor responses, and objects: triple dissociation among the hippocampus, caudate nucleus, and extrastriate visual cortex. Experimental Brain Research 93(3): 462–470.CrossRefGoogle Scholar
  48. 48.
    Packard, M.G., and J.L. McGaugh. 1992. Double dissociation of fornix and caudate nucleus lesions on acquisition of two water maze tasks: further evidence for multiple memory systems. Behavioral Neuroscience 106(3): 439.CrossRefGoogle Scholar
  49. 49.
    Knowlton, B.J., J.A. Mangels, and L.R. Squire. 1996. A neostriatal habit learning system in humans. Science 273(5280): 1399–1402.CrossRefGoogle Scholar
  50. 50.
    Schacter, D.L., and E. Tulving. 1994. Memory systems 1994: MIT Press.Google Scholar
  51. 51.
    Scoville, W.B., and B. Milner. 1957. Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery and Psychiatry 20(1): 11.CrossRefGoogle Scholar
  52. 52.
    Cacioppo, J.T., and L.G. Tassinary. 1990. Inferring psychological significance from physiological signals. American Psychologist 45(1): 16.CrossRefGoogle Scholar
  53. 53.
    Ferrucci, R., and A. Priori. 2014. Transcranial cerebellar direct current stimulation (tcDCS): motor control, cognition, learning and emotions. NeuroImage 85: 918–923.CrossRefGoogle Scholar
  54. 54.
    Boggio, P.S., L.P. Khoury, D.C. Martins, O.E. Martins, E. De Macedo, and F. Fregni. 2009. Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. Journal of Neurology, Neurosurgery & Psychiatry 80(4): 444–447.CrossRefGoogle Scholar
  55. 55.
    Ferrucci, R., F. Mameli, I. Guidi, S. Mrakic-Sposta, M. Vergari, S. Marceglia, and A. Priori. 2008. Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology 71(7): 493–498.CrossRefGoogle Scholar
  56. 56.
    Javadi, A.H., and P. Cheng. 2013. Transcranial direct current stimulation (tDCS) enhances reconsolidation of long-term memory. Brain Stimulation 6(4): 668–674.CrossRefGoogle Scholar
  57. 57.
    Perlmutter, J.S., and J.W. Mink. 2006. Deep brain stimulation. Annual Review of Neuroscience 29: 229–257.CrossRefGoogle Scholar
  58. 58.
    Hamani, C., M.P. McAndrews, M. Cohn, M. Oh, D. Zumsteg, C.M. Shapiro, and A.M. Lozano. 2008. Memory enhancement induced by hypothalamic/fornix deep brain stimulation. Annals of Neurology 63(1): 119–123.CrossRefGoogle Scholar
  59. 59.
    Suthana, N., Z. Haneef, J. Stern, R. Mukamel, E. Behnke, B. Knowlton, and I. Fried. 2012. Memory enhancement and deep-brain stimulation of the entorhinal area. New England Journal of Medicine 366(6): 502–510.CrossRefGoogle Scholar
  60. 60.
    Laxton, A.W., D.F. Tang‐Wai, M.P. McAndrews, D. Zumsteg, R. Wennberg, R. Keren, and G.S. Smith. 2010. A phase I trial of deep brain stimulation of memory circuits in Alzheimer's disease. Annals of Neurology 68(4): 521–534.CrossRefGoogle Scholar
  61. 61.
    Wang, J.X., L.M. Rogers, E.Z. Gross, A.J. Ryals, M.E. Dokucu, K.L. Brandstatt, and J.L. Voss. 2014. Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science 345(6200): 1054–1057.CrossRefGoogle Scholar
  62. 62.
    Andén, N.E., A. Dahlström, K. Fuxe, K. Larsson, L. Olson, and U. Ungerstedt. 1966. Ascending monoamine neurons to the telencephalon and diencephalon. Acta Physiologica Scandinavica 67(3‐4): 313–326.CrossRefGoogle Scholar
  63. 63.
    Dahlström, A., and K. Fuxe. 1964. Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiologica Scandinavica. Supplementum, SUPPL 232: 231.Google Scholar
  64. 64.
    Zilles, K., and K. Amunts. 2009. Receptor mapping: architecture of the human cerebral cortex. Current Opinion in Neurology 22(4): 331–339. doi: 10.1097/WCO.0b013e32832d95db.CrossRefGoogle Scholar
  65. 65.
    Zilles, K., N. Palomero-Gallagher, C. Grefkes, F. Scheperjans, C. Boy, K. Amunts, and A. Schleicher. 2002. Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry. European Neuropsychopharmacology 12(6): 587–599.CrossRefGoogle Scholar
  66. 66.
    Lynch, G. 2002. Memory enhancement: the search for mechanism-based drugs. Nature Neuroscience 5: 1035–1038.CrossRefGoogle Scholar
  67. 67.
    Lynch, G., L.C. Palmer, and C.M. Gall. 2011. The likelihood of cognitive enhancement. Pharmacology, Biochemistry and Behavior 99(2): 116–129.CrossRefGoogle Scholar
  68. 68.
    Bartus, R.T., R.L. Dean, B. Beer, and A.S. Lippa. 1982. The cholinergic hypothesis of geriatric memory dysfunction. Science 217(4558): 408–414.CrossRefGoogle Scholar
  69. 69.
    Francis, P.T., A.M. Palmer, M. Snape, and G.K. Wilcock. 1999. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. Journal of Neurology, Neurosurgery & Psychiatry 66(2): 137–147.CrossRefGoogle Scholar
  70. 70.
    Corey-Bloom, J. 2003. Galantamine: a review of its use in Alzheimer's disease and vascular dementia. International Journal of Clinical Practice 57(3): 219–223.Google Scholar
  71. 71.
    Hansen, R.A., G. Gartlehner, A.P. Webb, L.C. Morgan, C.G. Moore, and D.E. Jonas. 2008. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Clinical Interventions in Aging 3(2): 211.Google Scholar
  72. 72.
    Lanctôt, K.L., N. Herrmann, K.K. Yau, L.R. Khan, B.A. Liu, M.M. LouLou, and T.R. Einarson. 2003. Efficacy and safety of cholinesterase inhibitors in Alzheimer's disease: a meta-analysis. Canadian Medical Association Journal 169(6): 557–564.Google Scholar
  73. 73.
    Tariot, P.N., P. Solomon, J. Morris, P. Kershaw, S. Lilienfeld, and C. Ding. 2000. A 5-month, randomized, placebo-controlled trial of galantamine in AD. Neurology 54(12): 2269–2276.CrossRefGoogle Scholar
  74. 74.
    Trinh, N.-H., J. Hoblyn, S. Mohanty, and K. Yaffe. 2003. Efficacy of cholinesterase inhibitors in the treatment of neuropsychiatric symptoms and functional impairment in Alzheimer disease: a meta-analysis. Jama 289(2): 210–216.CrossRefGoogle Scholar
  75. 75.
    Repantis, D., O. Laisney, and I. Heuser. 2010. Acetylcholinesterase inhibitors and memantine for neuroenhancement in healthy individuals: a systematic review. Pharmacological Research 61(6): 473–481.CrossRefGoogle Scholar
  76. 76.
    Rokem, A., and M.A. Silver. 2010. Cholinergic enhancement augments magnitude and specificity of visual perceptual learning in healthy humans. Current Biology 20(19): 1723–1728.CrossRefGoogle Scholar
  77. 77.
    Bassett, D.S., and E. Bullmore. 2006. Small-world brain networks. The Neuroscientist 12(6): 512–523.CrossRefGoogle Scholar
  78. 78.
    Cacioppo, J. T., and Berntson, G. G. 2011. The Brain, Homeostasis, and Health. Balancing Demands of the Internal and External milieu. See Friedman, 121-137.Google Scholar
  79. 79.
    Weiss, N., F. Miller, S. Cazaubon, and P.-O. Couraud. 2009. The blood-brain barrier in brain homeostasis and neurological diseases. Biochimica et Biophysica Acta (BBA)-Biomembranes 1788(4): 842–857.CrossRefGoogle Scholar
  80. 80.
    Hills, T., and R. Hertwig. 2011. Why aren’t we smarter already evolutionary trade-offs and cognitive enhancements. Current Directions in Psychological Science 20(6): 373–377.CrossRefGoogle Scholar
  81. 81.
    Maslen, H., Faulmüller, N., and J. Savulescu. 2014. Pharmacological cognitive enhancement—how neuroscientific research could advance ethical debate. Frontiers in Systems Neuroscience, 8.Google Scholar
  82. 82.
    Brem, A.-K., P.J. Fried, J.C. Horvath, E.M. Robertson, and A. Pascual-Leone. 2014. Is neuroenhancement by noninvasive brain stimulation a net zero-sum proposition? NeuroImage 85: 1058–1068.CrossRefGoogle Scholar
  83. 83.
    Farah, M.J., C. Haimm, G. Sankoorikal, and A. Chatterjee. 2009. When we enhance cognition with Adderall, do we sacrifice creativity? a preliminary study. Psychopharmacology 202(1-3): 541–547.CrossRefGoogle Scholar
  84. 84.
    Iuculano, T., and R.C. Kadosh. 2013. The mental cost of cognitive enhancement. The Journal of Neuroscience 33(10): 4482–4486.CrossRefGoogle Scholar
  85. 85.
    Sarkar, A., A. Dowker, and R.C. Kadosh. 2014. Cognitive enhancement or cognitive cost: trait-specific outcomes of brain stimulation in the case of mathematics anxiety. The Journal of Neuroscience 34(50): 16605–16610.CrossRefGoogle Scholar
  86. 86.
    Kadosh, R.C. 2015. Modulating and enhancing cognition using brain stimulation: Science and fiction. Journal of Cognitive Psychology (ahead-of-print), 1-23.Google Scholar
  87. 87.
    Cabrera, L.Y., N.S. Fitz, and P.B. Reiner. 2015. Reasons for comfort and discomfort with pharmacological enhancement of cognitive, affective, and social domains. Neuroethics 8(2): 93–106.CrossRefGoogle Scholar
  88. 88.
    Davis, N. J., and M. G. van Koningsbruggen. 2013. “Non-invasive” brain stimulation is not non-invasive. Frontiers in Systems Neuroscience, 7.Google Scholar
  89. 89.
    Yuschak, T. 2006. Advanced lucid dreaming. The power of supplements.Google Scholar
  90. 90.
    Yuschak, T. 2007. Pharmacological induction of lucid dreams. Published online.Google Scholar
  91. 91.
    Kolber, A.J. 2006. Therapeutic forgetting: the legal and ethical implications of memory dampening. Vanderbilt Law Review 59: 1561.Google Scholar
  92. 92.
    Adler, J.M., and H.E. Hershfield. 2012. Mixed emotional experience is associated with and precedes improvements in psychological well-being. PLoS ONE 7(4): e35633.CrossRefGoogle Scholar
  93. 93.
    Bonanno, G.A. 2004. Loss, trauma, and human resilience: have we underestimated the human capacity to thrive after extremely aversive events? American Psychologist 59(1): 20.CrossRefGoogle Scholar
  94. 94.
    Evers, K. 2007. Perspectives on memory manipulation: using beta-blockers to cure post-traumatic stress disorder. Cambridge Quarterly of Healthcare Ethics 16(02): 138–146.CrossRefGoogle Scholar
  95. 95.
    Griffiths, R.R., and P.P. Woodson. 1988. Caffeine physical dependence: a review of human and laboratory animal studies. Psychopharmacology 94(4): 437–451.CrossRefGoogle Scholar
  96. 96.
    Juliano, L.M., and R.R. Griffiths. 2004. A critical review of caffeine withdrawal: empirical validation of symptoms and signs, incidence, severity, and associated features. Psychopharmacology 176(1): 1–29.CrossRefGoogle Scholar
  97. 97.
    Nutt, D.J., L.A. King, W. Saulsbury, and C. Blakemore. 2007. Development of a rational scale to assess the harm of drugs of potential misuse. The Lancet 369(9566): 1047–1053.CrossRefGoogle Scholar
  98. 98.
    Schultz, W., L. Tremblay, and J.R. Hollerman. 2000. Reward processing in primate orbitofrontal cortex and basal ganglia. Cerebral Cortex 10(3): 272–283.CrossRefGoogle Scholar
  99. 99.
    Grace, A.A. 1995. The tonic/phasic model of dopamine system regulation: its relevance for understanding how stimulant abuse can alter basal ganglia function. Drug and Alcohol Dependence 37(2): 111–129.CrossRefGoogle Scholar
  100. 100.
    Potenza, M.N. 2015. Perspective: behavioural addictions matter. Nature 522(7557): S62–S62.Google Scholar
  101. 101.
    Potenza, M.N., M.A. Steinberg, P. Skudlarski, R.K. Fulbright, C.M. Lacadie, M.K. Wilber, and B.E. Wexler. 2003. Gambling urges in pathological gambling: a functional magnetic resonance imaging study. Archives of General Psychiatry 60(8): 828–836.CrossRefGoogle Scholar
  102. 102.
    Tamminga, C.A., and E.J. Nestler. 2006. Pathological gambling: focusing on the addiction, not the activity. American Journal of Psychiatry 163(2): 180–181.CrossRefGoogle Scholar
  103. 103.
    Minzenberg, M.J., and C.S. Carter. 2008. Modafinil: a review of neurochemical actions and effects on cognition. Neuropsychopharmacology 33(7): 1477–1502.CrossRefGoogle Scholar
  104. 104.
    Repantis, D., P. Schlattmann, O. Laisney, and I. Heuser. 2010. Modafinil and methylphenidate for neuroenhancement in healthy individuals: a systematic review. Pharmacological Research 62(3): 187–206.CrossRefGoogle Scholar
  105. 105.
    Vincent, N. 2013. Enhancing responsibility. Neuroscience and legal responsibilty, 305–336.Google Scholar
  106. 106.
    Savulescu, J., and B. Foddy. 2011. Le Tour and failure of zero tolerance: time to relax doping controls. Enhancing human capacities. Wiley-Blackwell, Malden, 304-312.Google Scholar
  107. 107.
    Giordano, J. 2014. Neurotechnology in National Security and Defense: Practical Considerations, Neuroethical Concerns: CRC Press.Google Scholar
  108. 108.
    Greely, H.T. 2011. Of nails and hammers: human biological enhancement and U.S. Policy Tools. In J. Savulescu, R. t. Meulen & G. Kahane (Eds.), Enhancing Human Capacities (pp. 503-520): Wiley-Blackwell.Google Scholar
  109. 109.
    Lin, P., Mehlman, M., Abney, K., and J. Galliott. 2014. Super soldiers (Part 1): what is military human enhancement?. Global Issues and Ethical Considerations in Human Enhancement Technologies, 119.Google Scholar
  110. 110.
    Moreno, J.D. 2003. Neuroethics: an agenda for neuroscience and society. Nature Reviews Neuroscience 4(2): 149–153.CrossRefGoogle Scholar
  111. 111.
    Moreno, J.D. 2006. Mind wars: brain research and national defense. Washington, DC: Dana Press.Google Scholar
  112. 112.
    Appel, J.M. 2008. When the boss turns pusher: a proposal for employee protections in the age of cosmetic neurology. Journal of Medical Ethics 34(8): 616–618.CrossRefGoogle Scholar
  113. 113.
    Beddington, J., C.L. Cooper, J. Field, U. Goswami, F.A. Huppert, R. Jenkins, and S.M. Thomas. 2008. The mental wealth of nations. Nature 455(7216): 1057–1060.CrossRefGoogle Scholar
  114. 114.
    de Sio, F. S., Faulmüller, N., and N. A. Vincent. 2014. How cognitive enhancement can change our duties. Frontiers in Systems Neuroscience, 8.Google Scholar
  115. 115.
    Goold, I., and H. Maslen. 2014. Must the surgeon take the pill? negligence duty in the context of cognitive enhancement. The Modern Law Review 77(1): 60–86.CrossRefGoogle Scholar
  116. 116.
    Norton, M.I., and D. Ariely. 2011. Building a better America—one wealth quintile at a time. Perspectives on Psychological Science 6(1): 9–12.CrossRefGoogle Scholar
  117. 117.
    Savulescu, J. 2009. Enhancement and fairness. Journal of Medical Ethics 33: 284–288.CrossRefGoogle Scholar
  118. 118.
    Tremblay, S., J.-F. Lepage, A. Latulipe-Loiselle, F. Fregni, A. Pascual-Leone, and H. Théoret. 2014. The uncertain outcome of prefrontal tDCS. Brain Stimulation 7(6): 773–783.CrossRefGoogle Scholar
  119. 119.
    Jie, F., Tiecheng, W., Yan, Y., Duc, B. H., and L. Xiaoping. 2013. A magnetic field projector for deep brain modulation. Paper presented at the Neural Engineering (NER), 2013 6th International IEEE/EMBS Conference on.Google Scholar
  120. 120.
    Loveman, E., Green, C., Kirby, J., Takeda, A., Picot, J., Payne, E., and A. Clegg. 2006. The clinical and cost-effectiveness of donepezil, rivastigmine, galantamine and memantine for Alzheimer’s disease.Google Scholar
  121. 121.
    Fraix, V., J. Houeto, C. Lagrange, C. Le Pen, P. Krystkowiak, D. Guehl, and L. Defebvre. 2006. Clinical and economic results of bilateral subthalamic nucleus stimulation in Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry 77(4): 443–449.CrossRefGoogle Scholar
  122. 122.
    Green, A., C. Joint, H. Sethi, P. Bain, and T. Aziz. 2004. Cost analysis of unilateral and bilateral pallidotomy for Parkinson's disease. Journal of Clinical Neuroscience 11(8): 829–834.CrossRefGoogle Scholar
  123. 123.
    Erler, A. 2011. Does memory modification threaten our authenticity? Neuroethics 4(3): 235–249.CrossRefGoogle Scholar
  124. 124.
    Earp, B.D., A. Sandberg, G. Kahane, J. Savulescu, B. Earp, A. Sandberg, and J. Savulescu. 2014. When is diminishment a form of enhancement? rethinking the enhancement debate in biomedical ethics. Name: Frontiers in Systems Neuroscience 8: 12.Google Scholar
  125. 125.
    Donovan, E. 2010. Propranolol use in the prevention and treatment of posttraumatic stress disorder in military veterans: forgetting therapy revisited. Perspectives in Biology and Medicine 53(1): 61–74.CrossRefGoogle Scholar
  126. 126.
    Henry, M., J.R. Fishman, and S.J. Youngner. 2007. Propranolol and the prevention of post-traumatic stress disorder: is it wrong to erase the “sting” of bad memories? The American Journal of Bioethics 7(9): 12–20.CrossRefGoogle Scholar
  127. 127.
    Conrad, P. 2008. The medicalization of society: On the transformation of human conditions into treatable disorders: JHU Press.Google Scholar
  128. 128.
    Elliott, C. 2004. Better than well: American medicine meets the American dream: WW Norton & Company.Google Scholar
  129. 129.
    Frances, A. 2013. Saving normal: an insider’s revolt against out-of-control psychiatric diagnosis, DSM-5, big pharma and the medicalization of ordinary life. Psychotherapy in Australia 19(3): 14.Google Scholar
  130. 130.
    Elliott, C. 1999. A philosophical disease: Bioethics, culture, and identity: Psychology Press.Google Scholar
  131. 131.
    Levy, N. 2007. Neuroethics: Challenges for the 21st century. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  132. 132.
    Cahill, L., and M.T. Alkire. 2003. Epinephrine enhancement of human memory consolidation: interaction with arousal at encoding. Neurobiology of Learning and Memory 79(2): 194–198.CrossRefGoogle Scholar
  133. 133.
    Cahill, L., L. Gorski, and K. Le. 2003. Enhanced human memory consolidation with post-learning stress: interaction with the degree of arousal at encoding. Learning & Memory 10(4): 270–274.CrossRefGoogle Scholar
  134. 134.
    LaBar, K.S., and E.A. Phelps. 1998. Arousal-mediated memory consolidation: role of the medial temporal lobe in humans. Psychological Science 9(6): 490–493.CrossRefGoogle Scholar
  135. 135.
    Nehlig, A., J.-L. Daval, and G. Debry. 1992. Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Research Reviews 17(2): 139–170.CrossRefGoogle Scholar
  136. 136.
    Smith, M.E., and M.J. Farah. 2011. Are prescription stimulants “smart pills”? the epidemiology and cognitive neuroscience of prescription stimulant use by normal healthy individuals. Psychological Bulletin 137(5): 717.CrossRefGoogle Scholar
  137. 137.
    Wilens, T.E. 2006. Mechanism of action of agents used in attention-deficit/hyperactivity disorder. Journal of Clinical Psychiatry 67: 32.Google Scholar
  138. 138.
    Foster, J.K., and M.E. Jelicic. 1999. Memory: Systems, process, or function? : Oxford University Press.Google Scholar
  139. 139.
    Roediger III, H.L. 2003. Reconsidering implicit memory. In: Bowers, J.S. and Marsolek, C.J. (eds.), Rethinking implicit memory. pp. 3-18. New York: Oxford University Press.Google Scholar
  140. 140.
    Tulving, E. 2007. Are there 256 different kinds of memory. The foundations of remembering: Essays in honor of Henry L. Roediger, III, 1, 39-52.Google Scholar
  141. 141.
    Simons, D.J., and C.F. Chabris. 2011. What people believe about how memory works: a representative survey of the US population. PLoS ONE 6(8): e22757.CrossRefGoogle Scholar
  142. 142.
    Fitz, N.S., and P.B. Reiner. 2013. The challenge of crafting policy for do-it-yourself brain stimulation. Journal of medical ethics, medethics-2013-101458.Google Scholar
  143. 143.
    Cabrera, L. Y., Fitz, N. S., and Reiner, P. B. 2014. Empirical support for the moral salience of the therapy-enhancement distinction in the debate over cognitive, affective and social enhancement. Neuroethics, 1–14.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Kieran C. R. Fox
    • 1
    Email author
  • Nicholas S. Fitz
    • 2
  • Peter B. Reiner
    • 2
  1. 1.Department of PsychologyUniversity of British ColumbiaVancouverCanada
  2. 2.National Core for Neuroethics, Department of PsychiatryUniversity of British ColumbiaVancouverCanada

Personalised recommendations