, Volume 6, Issue 3, pp 617–625 | Cite as

Brain Machine Interface and Human Enhancement – An Ethical Review

  • Karim JebariEmail author
Original Paper


Brain machine interface (BMI) technology makes direct communication between the brain and a machine possible by means of electrodes. This paper reviews the existing and emerging technologies in this field and offers a systematic inquiry into the relevant ethical problems that are likely to emerge in the following decades.


Brain computer interface Brain machine interface Neuroethics Bioethics Electroencephalography Neuromotor prosthesis Autonomy Privacy 


Conflicting Interests



  1. 1.
    Lebedev, M.A., and Nicolelis, M.A.L. 2006. Brain–machine interfaces: past, present and future. Trends in Neurosciences 29(9): 536–546.Google Scholar
  2. 2.
    Vidal, J. 1973. Toward direct brain–computer communication. In Annual Review of Biophysics and Bioengineering, vol. 2, ed. L.J. Mullins, 157–180. Palo Alto: Annual Reviews, Inc.Google Scholar
  3. 3.
    Clausen, J. 2010. Ethical brain stimulation- neuroethics of deep brain stimulation in research and clinical practice. European Journal of Neuroscience 32: 1152–1162.CrossRefGoogle Scholar
  4. 4.
    Bell, E., G. Mathieu, and E. Racine. 2009. Preparing the ethical future of deep brain stimulation. Surgical Neurology 72: 577–586.CrossRefGoogle Scholar
  5. 5.
    Glannon, W. 2009. Stimulating brains, altering minds. Journal of Medical Ethics 35: 289–292. For an excellent paper on issues relating to informed consent and effective communications strategies.CrossRefGoogle Scholar
  6. 6.
    Haselager, et al. 2009. A note on the ethical aspects of BCI. Neural Networks 22: 1352–1357.CrossRefGoogle Scholar
  7. 7.
    Clausen, J. 2009. Man, machine and in between. Nature 457: 1080–1081.Google Scholar
  8. 8.
    Bostrom, N., and T. Ord. 2006. The reversal test: Eliminating status quo bias in applied ethics. Ethics 116: 656–679.CrossRefGoogle Scholar
  9. 9.
    Synofzik, M., and T.E. Schlaepfer. 2008. Stimulating personality: Ethical criteria for deep brain stimulation in psychiatric patients and for enhancement purposes. Biotechnology Journal 3(12): 1511–1520.CrossRefGoogle Scholar
  10. 10.
    Roache, R., and S. Clarke. 2009. Bioconservatism, bioliberalism, and the wisdom of reflecting on repugnance. Monash Bioethics Review 28(1): 4.1–21.Google Scholar
  11. 11.
    Niedermeyer, E., and F.L. Da Silva. 1999. Electroencephalography, 4th ed. Baltimore: Williams & Wilkins. 1258 pp.Google Scholar
  12. 12.
    Freedman, D.H. Inc. Magazine [Internet] Reality Bites [updated 2008 Dec 1, cited 2010 Jan 29]. Available from:
  13. 13.
    Lewis, D., and D. Brigder. 2005. Market Researchers make Increasing use of Brain Imaging. Advances in Clinical Neuroscience and Rehabilitation 5(3): 36–37.Google Scholar
  14. 14.
    Shenoy, P., K.J. Miller, J.G. Ojemann, and P.N. Rajesh. 2008. Generalized features for electrocorticographic BCIs. IEEE Transactions on Biomedical Engineering 55(1).Google Scholar
  15. 15.
    Hochberg, L.R., M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, et al. 2006. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442. doi: 10.1038/nature04970.
  16. 16.
    Webster, T.J., M.C. Waid, J.L. McKenzie, R.L. Price, and J.U. Ejiofor. 2004. Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants. Nanotechnology 15(1): 48–54.Google Scholar
  17. 17.
    Handa, G. 2006. Neural prosthesis – past, present and future. Indian Journal of Physical Medicine & Rehabilitation 17(1).Google Scholar
  18. 18.
    Clark, G.M. 2008. Personal reflections on the multichannel cochlear implant and a view of the future. Journal of Rehabilitation Research & Development 45(5): 651–694.Google Scholar
  19. 19.
    Loudin, J.D., D.M. Simanovskii, K.V. Vijayraghavan, C.K. Sramek, A.F. Butterwick, P. Huie, G.Y. McLean, and D.V. Palanker. 2007. Optoelectronic retinal prosthesis: System design and performance. Journal of Neural Engineering 4: S72–S84.CrossRefGoogle Scholar
  20. 20.
    Kupsch, A., A. Kuehn, S. Klaffke, W. Meissner, D. Harnack, C. Winter, et al. 2003. Deep brain stimulation in dystonia. Journal of Neurology 250(Suppl 1): I/47–I/52.Google Scholar
  21. 21.
    Greenberg, B.D., D.A. Malone, G.M. Friehs, A.R. Rezai, C.S. Kubu, and P.F. Malloy. 2006. Three-year outcomes in deep brain stimulation for highly resistant obsessive–compulsive disorder. Neuropsychopharmacology 31: 2384–2393.CrossRefGoogle Scholar
  22. 22.
    Gabriëls, L., P. Cosyns, B. Nuttin, H. Demeulemeester, and J. Gybels. 2003. Deep brain stimulation for treatment-refractory obsessive-compulsive disorder: psychopathological and neuropsychological outcome in three cases. Acta Psychiatrica Scandinavica 107(4): 275–282.Google Scholar
  23. 23.
    Romito, L.M., M. Raja, A. Daniele, M.F. Contarino, A.R. Bentivoglio, A. Barbier, M. Scerrati, and A. Albanese. 2002. Transient mania with hypersexuality after surgery for high frequency stimulation of the subthalamic nucleus in Parkinson’s disease. Movement Disorders 17(6): 1371–1374.Google Scholar
  24. 24.
    Smeding, H.M., A.E. Goudriaan, E.M. Foncke, P.R. Schuurman, J.D. Speelman, and B. Schmand. 2007. Pathological gambling after bilateral subthalamic nucleus stimulation in Parkinson disease. Journal of Neurology, Neurosurgery, and Psychiatry 78: 517–519. doi: 10.1136/jnnp.2006.102061.CrossRefGoogle Scholar
  25. 25.
    Clausen, J. 2009. Man, machine and in between. Nature 457: 1080–1081.CrossRefGoogle Scholar
  26. 26.
    Benabid, A.L., B. Wallace, J. Mitrofanis, C. Xia, B. Piallat, V. Fraix, et al. 2005. Therapeutic electrical stimulation of the central nervous system. Comptes Rendus Biologies 328(2): 177–186.CrossRefGoogle Scholar
  27. 27.
    Halpern, C.H., J.A. Wolf, T.L. Bale, A.J. Stunkard, S.F. Danish, M. Grossman, et al. 2008. Deep brain stimulation in the treatment of obesity. Journal of Neurosurgery 109(4): 625–634.CrossRefGoogle Scholar
  28. 28.
    David, P., M. Alan, and G. Randy. 1998. Computational intelligence: A logical approach. New York: Oxford University Press.Google Scholar
  29. 29.
    Sanchez, J.C., B. Mahmoudi, J. DiGiovanna, and J.C. Principe. 2009. Exploiting co-adaptation for the design of symbiotic neuroprosthetic assistants. Neural Networks 22: 305–315. special issue on Goal-Directed Neural Systems.CrossRefGoogle Scholar
  30. 30.
    DiGiovanna, J., B. Mahmoudi, J. Fortes, J.C. Principe, and J.C. Sanchez. 2009. Brain-machine interface via reinforcement learning. Transactions on Biomedical Engineering 56: 54–64. special issue on Hybrid Bionics.CrossRefGoogle Scholar
  31. 31.
    Rauschecker, J.P. 1999. Auditory cortical plasticity: A comparison with other sensory systems. Trends in Neurosciences 22(2): 74–80.CrossRefGoogle Scholar
  32. 32.
    Caspi, A., J.D. Dorn, K.H. McClure, M.S. Humayun, R.J. Greenberg, and M.J. McMahon. 2009. Feasibility study of a retinal prosthesis spatial vision with a 16-electrode implant. Archives of Ophthalmology 127(4): 398–401.CrossRefGoogle Scholar
  33. 33.
    Zrenner, E. 2002. Will retinal implants restore vision? Science 295(5557): 1022–1025.Google Scholar
  34. 34.
    Lee, K.H., C.D. Blaha, P.A. Garris, P. Mohseni, A.E. Horne, K.E. Bennet, et al. 2009. Evolution of deep brain stimulation: Human electrometer and smart devices supporting the next generation of therapy. Neuromodulation: Technology at the Neural Interface 12(2): 85–103.CrossRefGoogle Scholar
  35. 35.
    Department of Defense Fiscal Year (FY) 2010 Budget Estimates May 2009 Research, Development, Test and Evaluation, Defence-Wide Volume 1 - Defense Advanced Research Projects Agency Exhibit R-2a, PB 2010 Defense Advanced Research Projects Agency RDT&E Project Justification Available at [Internet]:
  36. 36.
    Denby, B., T. Schultz, K, Honda, T. Hueber, J.M. Gilbert, and J.S. Brumberg. 2009. Silent Speech Interfaces. Speech Communication 52(4): 2010Google Scholar
  37. 37.
    Denby, B., T. Schultz, K. Honda, et al. 2009. Silent speech interfaces. Speech Communication 52: 270–287.CrossRefGoogle Scholar
  38. 38.
    Kotchetkov, I. S., Hwang, B.Y., Appelboom, G., Kellner, C.P., and Connolly Jr., E.S. 2010. Brain-computer interfaces: military, neurosurgical, and ethical perspective. Neurosurgical Focus 28(5)Google Scholar
  39. 39.
    Talwar, S.K., S. Xu, E.S. Hawley, S.A. Weiss, K.A. Moxon, and J.K. Chapin. 2002. Behavioural neuroscience: Rat navigation guided by remote control. Nature 417: 37–38. doi: 10.1038/417037a.CrossRefGoogle Scholar
  40. 40.
    Lindsey, J.R. 2007. America and the new dynamics of war. Peace Review: A journal of social Justice 19(2): 255–260.Google Scholar
  41. 41.
    Savulescu, J., N. Bostrom. (eds) 2009. Human enhancement. Oxford: Oxford University Press. 416 pp.Google Scholar
  42. 42.
    Real, F. D., and F. Berry. 2010. Smart cameras: Technologies and applications. In Smart cameras, ed. A. N. Belbachir, 35–50. US: Springer.Google Scholar
  43. 43.
    Persson, A. J., and S. O. Hansson. 2003. Privacy at work –ethical criteria. Journal of business ethics 42(1): 59–70.Google Scholar
  44. 44.
    Thomson, J. 1975. The right to privacy. Philosophy and Public Affairs 4: 295–314.Google Scholar
  45. 45.
    Moore, A.D. 1998. Intangible property: Privacy, power, and information control. American Philosophical Quarterly 35: 365–378.Google Scholar
  46. 46.
    Moore, A.D. 2008. Defining privacy. Journal of Social Philosophy 39: 411–428. fall.CrossRefGoogle Scholar
  47. 47.
    Ripstein, A. 1999. Equality, responsibility, and the law. Cambridge University Press, New York, pp. xii+307.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Kungliga tekniska högskolan (Royal Institute of Technology)StockholmSweden

Personalised recommendations