, Volume 6, Issue 1, pp 105–114 | Cite as

What is the “Cognitive” in Cognitive Neuroscience?

Original Paper


This paper argues that the cognitive neuroscientific use of ordinary mental terms to report research results and draw implications can contribute to public confusion and misunderstanding regarding neuroscience results. This concern is raised at a time when cognitive neuroscientists are increasingly required by funding agencies to link their research to specific results of public benefit, and when neuroethicists have called for greater attention to public communication of neuroscience. The paper identifies an ethical dimension to the problem and presses for greater sensitivity and responsibility among neuroscientists regarding their use of such terms.


Cognitive neuroscience Folk psychology Research results Translational implications Public communication Media ethics Science reporting 



My deepest thanks go to Bradley Taber-Thomas for extensive input on early drafts of this paper and Colin Klein for astute comments on the final draft. Thanks also to Daniel Tranel, Tom Brashers-Krug, and Justin Feinstein for comments and references, and to audiences at presentations of drafts at the University of Iowa Interdisciplinary Graduate Program in Neuroscience, the Iowa Philosophical Society 2010 annual meeting, and the Southern Society for Philosophy and Psychology 2011 annual meeting.


  1. 1.
    NIH Division of Program Coordination, Planning and Strategic Initiatives. Translational Research. Accessed 28 March, 2012.
  2. 2.
    Maienschein, J., M. Sunderland, R.A. Ankeny, and J.S. Robert. 2008. The ethos and ethics of translational research. The American Journal of Bioethics 8: 43–51.CrossRefGoogle Scholar
  3. 3.
    Illes, J., M.A. Moser, J.B. McCormick, E. Racine, S. Blakeslee, A. Caplan, E.C. Hayden, J. Ingram, T. Lohwater, P. McKnight, C. Nicholson, A. Phillips, K.D. Sauvé, E. Snell, and S. Weiss. 2010. Neurotalk: improving the communication of neuroscience research. Nature Reviews Neuroscience 11: 61–69.CrossRefGoogle Scholar
  4. 4.
    Hamilton, Jon. 2011. Computers one step closer to reading your mind. National public radio (All Things Considered; Robert Siegel, host), March 11 broadcastGoogle Scholar
  5. 5.
    Greene, J.D., R.B. Sommerville, L.E. Nystrom, J.M. Darley, and J.D. Cohen. 2001. An fMRI investigation of emotional engagement in moral judgment. Science 293: 2105–2108.CrossRefGoogle Scholar
  6. 6.
    Quian Quiroga, R., L. Reddy, G. Kreiman, C. Koch, and I. Fried. 2005. Invariant visual representation by single neurons in the human brain. Nature 435: 1102–1107.CrossRefGoogle Scholar
  7. 7.
    Poldrack, R.A. 2010. Mapping mental function to brain structure: how can cognitive neurimaging succeed? Perspectives on Psychological Science 5(6): 753–761.CrossRefGoogle Scholar
  8. 8.
    Fodor, J. 1987. Psychosemantics. Cambridge: MIT Press.Google Scholar
  9. 9.
    Griffiths, T.L., N. Chater, C. Kemp, A. Perfors, and J.B. Tenenbaum. 2010. Probabilistic models of cognition: exploring representations and inductive biases. Trends in Cognitive Sciences 14: 357–364.CrossRefGoogle Scholar
  10. 10.
    Dennett, D. 1987. The intentional stance. Cambridge: MIT Press.Google Scholar
  11. 11.
    Churchland, P. 1981. Eliminative materialism and the propositional attitudes. The Journal of Philosophy 78(2): 67–90.CrossRefGoogle Scholar
  12. 12.
    Gluck, M.A., M. Meeter, and C.E. Myers. 2003. Computational models of the hippocampal region: linking incremental learning and episodic memory. Trends in Cognitive Sciences 7(6): 269–276.CrossRefGoogle Scholar
  13. 13.
    Machamer, Peter. 2009. Learning, neuroscience, and the return of behaviorism. In The Oxford Handbook of Philosophy and Neuroscience, ed. Bickle John, 166–176. New York: Oxford University Press.Google Scholar
  14. 14.
    Uttal, W. 2001. The new phrenology. Cambridge: MIT Press.Google Scholar
  15. 15.
    Lenartowicz, A., D.J. Kalar, E. Congdon, and R.A. Poldrack. 2010. Towards an ontology of cognitive control. Topics in Cognitive Science 2: 678–692.CrossRefGoogle Scholar
  16. 16.
    McClelland, J.L., M.M. Botvinick, D.C. Noelle, D.C. Plaut, T.T. Rogers, M.S. Seidenberg, and L.B. Smith. 2010. Letting structure emerge: connectionist and dynamical systems approaches to cognition. Trends in Cognitive Sciences 14: 348–356.CrossRefGoogle Scholar
  17. 17.
    Klein, D.C., R.Y. Moore, and S.M. Reppert (eds.). 1991. Suprachiasmatic nucleus: the mind’s clock. New York: Oxford University Press.Google Scholar
  18. 18.
    Fisher, H., A. Aron, and L.L. Brown. 2005. Romantic love: an fMRI study of a neural mechanism for mate choice. The Journal of Comparative Neurology 493: 58–62.CrossRefGoogle Scholar
  19. 19.
    Aron, A., H. Fisher, D. Mashek, G. Strong, H. Li, and L.L. Brown. 2005. Reward, motivation and emotion systems associated with early-stage intense romantic love. Journal of Neurophysiology 94: 327–337.CrossRefGoogle Scholar
  20. 20.
    Schiller, D., Marie-H Montfils, C.M. Raio, D.C. Johnson, J.E. LeDoux, and E.A. Phelps. 2010. Preventing the return of fear in humans using reconsolidation update mechanisms. Nature 463: 49–53.CrossRefGoogle Scholar
  21. 21.
    Olds, J., and P. Milner. 1954. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. Journal of Comparative and Physiological Psychology 47(5): 419–427.CrossRefGoogle Scholar
  22. 22.
    Olds, J. 1956. Pleasure centers in the brain. Scientific American 195(4): 105–116.CrossRefGoogle Scholar
  23. 23.
    Wise, R.A. 1996. Neurobiology of addiction. Current Opinion in Neurobiology 6: 243–251.CrossRefGoogle Scholar
  24. 24.
    Kawagoe, R., Y. Takikawa, and O. Hikosaka. 1998. Expectation of reward modulates cognitive signals in the basal ganglia. Nature Neuroscience 1(5): 411–416.CrossRefGoogle Scholar
  25. 25.
    Bartels, A., and Zeki, S. 2000. The neural basis of romantic love. NeuroReport 11(17): 3829–3834.Google Scholar
  26. 26.
    Blanchard, R.J., and D. Caroline Blanchard. 1969. Crouching as an index of fear. Journal of Comparative and Physiological Psychology 67(3): 370–375.CrossRefGoogle Scholar
  27. 27.
    Misanin, J.R., R.R. Miller, and D.J. Lewis. 1968. Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science 160(3827): 554–555.CrossRefGoogle Scholar
  28. 28.
    Nader, K., G.E. Schafe, and J.E. LeDoux. 2000. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406: 722–726.CrossRefGoogle Scholar
  29. 29.
    Phelps, E.A., M.R. Delgado, K.I. Nearing, and J.E. LeDoux. 2004. Extinction learning in humans: role of the Amygdala and vmPFC. Neuron 43: 897–905.CrossRefGoogle Scholar
  30. 30.
    Milad, M.R., C.I. Wright, S.P. Orr, R.K. Pitman, G.J. Quirk, and S.L. Rauch. 2007. Recall of Fear Extinction in Humans Activates the Ventromedial Prefrontal Cortex and Hippocampus in Concert. Biological Psychiatry 62(62): 446–454.CrossRefGoogle Scholar
  31. 31.
    Eichenbaum, Howard. 2004. An information processing framework for memory representation by the hippocampus. In Gazzaniga, Michael S. 2004 (ed). The cognitive neurosciences III. Cambridge: MIT Press/CogNet LibraryGoogle Scholar
  32. 32.
    Squire, Larry R., Robert E. Clark and Peter J. Bayley. 2004. Medial temporal lobe function and memory. In Gazzaniga, Michael S. 2004 (ed). The Cognitive Neurosciences III. Cambridge: MIT Press/CogNet LibraryGoogle Scholar
  33. 33.
    Schacter, Daniel S. (2004). Memory: introduction. In Gazzaniga, Michael S. 2004 (ed). The Cognitive Neurosciences III. Cambridge: MIT Press/CogNet LibrarGoogle Scholar
  34. 34.
    Adolphs, R. 2010. What does the amygdala contribute to social cognition? Annals of the New York Academy of Sciences 1191(1): 42–61.CrossRefGoogle Scholar
  35. 35.
    Alvarez, R.P., L. Johnson, and C. Grillon. 2007. Contextual-specificity of short-delay extinction in humans: renewal of fear-potentiated startle in a virtual environment. Learning and Memory 14: 247–253.CrossRefGoogle Scholar
  36. 36.
    Fehr, E., and C.F. Camerer. 2007. Social neuroeconomics: the neural circuitry of social preferences. Trends in Cognitive Sciences 11: 419–427.CrossRefGoogle Scholar
  37. 37.
    McClure, S.M., J. Li, D. Tomlin, K.S. Cypert, L.M. Montague, and P. Read Montague. 2004. Neural correlates of behavioral preference for culturally familiar drinks. Neuron 44: 379–387.CrossRefGoogle Scholar
  38. 38.
    Harris, L.T., and S.T. Fiske. 2006. Dehumanizing the lowest of the low: neuro-imaging responses to extreme outgroups. Psychological Science 17: 847–853.CrossRefGoogle Scholar
  39. 39.
    Ochsner, K.N., and M.D. Lieberman. 2001. The emergence of social cognitive neuroscience. American Psychologist 56(9): 717–734.CrossRefGoogle Scholar
  40. 40.
    Roskies, A. 2002. Neuroethics for the new millenium. Neuron 35: 21–23.CrossRefGoogle Scholar
  41. 41.
    Roskies, A. 2009. What’s “Neu” in Neuroethics? In The Oxford Handbook of Philosophy and Neuroscience, ed. J. Bickle, 454–470. New York: Oxford University Press.Google Scholar
  42. 42.
    Farah, M.J. 2005. Neuroethics: the practical and the philosophical. Trends in Cognitive Sciences 9(1): 34–40.CrossRefGoogle Scholar
  43. 43.
    Illes, J., and S. Bird. 2006. Neuroethics: a modern context for ethics in neuroscience. Trends in Neurosciences 29(9): 511–517.CrossRefGoogle Scholar
  44. 44.
    Farah, M.J. 2002. Emerging ethical issues in neuroscience. Nature Neuroscience 5(11): 1123–1129.CrossRefGoogle Scholar
  45. 45.
    Berridge, K.C., and T.E. Robinson. 2003. Parsing reward. Trends in Neurosciences 26(9): 507–513.CrossRefGoogle Scholar
  46. 46.
    Kovach, B., and T. Rosenstiel. 2001. The elements of journalism. New York: Three Rivers Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Philosophy and Interdisciplinary Graduate Program in NeuroscienceUniversity of IowaIowa CityUSA

Personalised recommendations