Neuroethics

, Volume 5, Issue 3, pp 261–274

The Neurotechnological Cerebral Subject: Persistence of Implicit and Explicit Gender Norms in a Network of Change

Original Paper

Abstract

Under the realm of neurocultures the concept of the cerebral subject emerges as the central category to define the self, socio-cultural interaction and behaviour. The brain is the reference for explaining cognitive processes and behaviour but at the same time the plastic brain is situated in current paradigms of (self)optimization on the market of meritocracy by means of neurotechnologies. This paper explores whether neurotechnological apparatuses may—due to their hybridity and malleability—bear potentials for a change in gender based attributions that have been historically legitimized by apparently natural differences between women and men. Or, in contrast, which gendered ascriptions are (again) produced in theories and applications according to the normative demands for the bio-techno-social cerebral subject situated in neoliberal power relations. An exploration of three main fields of current developments, the neurotechnological apparatus of brain-computer-interfaces, the technologies for brain tuning and the discourses in neuroeconomics, reveals first insights on these gender aspects in reliance with the ethical/political debate. Moreover, this paper concretizes questions for further research on gender and ethical aspects in the field of neurotechnologies.

Keywords

Neurotechnologies Neuroenhancement Cerebral subject Optimization Gender and ethics 

References

  1. 1.
    Dimitrios, K., A.K. Barbey, Michael Su, G. Zamboni, F. Krueger, and J. Grafman. 2009. Cognitive and neural foundations of religious belief. Proceedings of the National Academy of Sciences 106(12): 4876–4881.CrossRefGoogle Scholar
  2. 2.
    Savic, I., and P. Lindström. 2008. PET and MRI show differences in cerebral asymmetry and functional connectivity between homo- and heterosexual subjects. Proceedings of the National Academy of Sciences 105(27): 9403–9408.CrossRefGoogle Scholar
  3. 3.
    Ortega, F., and F. Vidal. 2007. Mapping the cerebral subject in contemporary culture. RECIIS 1(2): 255–259.Google Scholar
  4. 4.
    Kaiser, A., E. Kuenzli, D. Zappatore, and C. Nitsch. 2007. On females’ lateral and males’ bilateral activation during language production: A fMRI study. International Journal of Psychophysiology 63: 192–198.CrossRefGoogle Scholar
  5. 5.
    Maguire, E.M., D.G. Gadian, I.S. Johnsrude, C.D. Good, J. Ashburner, R.S.J. Frackowiak, and C.D. Frith. 2000. Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Science 97(6): 1–6.Google Scholar
  6. 6.
    Bogdan, D., C. Gaser, V. Busch, G. Schuierer, U. Bogdahn, and A. May. 2004. Neuroplasticity: Changes in grey matter induced by training. Nature 427: 311–312.CrossRefGoogle Scholar
  7. 7.
    Haynes, J.-D., and G. Rees. 2006. Decoding mental states from brain activity in humans. Nature Reviews Neuroscience 7(7): 523–34.CrossRefGoogle Scholar
  8. 8.
    Roth, G., and K.-J. Grün (eds.). 2006. Das Gehirn und seine Freiheit. Göttingen: Vanderhoek & Ruprecht.Google Scholar
  9. 9.
    Maasen, S., and B. Sutter (eds.). 2007. On willing selves. Neoliberal politics vis-à-vis the neuroscientific challenge. New York: Palgrave Mcmillan.Google Scholar
  10. 10.
    Rose, S. 2005. The future of the brain: The promise and perils of tomorrow’s neuroscience. Oxford: Oxford Univ. Press.Google Scholar
  11. 11.
    Clausen, J. 2009. Man, machine and in between. Nature 457: 1080–1081.CrossRefGoogle Scholar
  12. 12.
    Schmitz, S. 2010. Sex, gender, and the brain—biological determinism versus socio-cultural constructivism. In Gender and sex in biomedicine. Theories, methodologies, results, ed. I. Klinge and C. Wiesemann, 57–76. Göttingen: Universitätsverlag Göttingen.Google Scholar
  13. 13.
    Sommer, I.E., A. Aleman, A. Bouma, and R.S. Kahn. 2004. Do women really have more bilateral language representation than men? A meta-analysis of functional imaging studies. Brain 127: 1845–1852.CrossRefGoogle Scholar
  14. 14.
    Sommer, I.E., A. Aleman, M. Somers, M.P. Boks, and R.S. Kahn. 2008. Sex differences in handedness, asymmetry of the planum temporale and functional language lateralization. Brain Research 1206: 76–88.CrossRefGoogle Scholar
  15. 15.
    Emanuele, C., and G. Louse. 2004. Gender differences in spatial orientation: A review. Journal of Environmental Psychology 24: 329–340.CrossRefGoogle Scholar
  16. 16.
    Lavenex, P.B., and P. Pierre Lavenex. 2010. Spatial relational learning and memory abilities do not differ between men and women in a real-world, open-field environment. Behavioural Brain Research 207: 125–137.CrossRefGoogle Scholar
  17. 17.
    Spelke, E.S. 2005. Sex differences in intrinsic aptitudes for mathematics and science? A critical review. American Psychologist 60: 950–958.CrossRefGoogle Scholar
  18. 18.
    Else-Quest, N.M., J.S. Hyde, and M.C. Linn. 2010. Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychological Bulletin 136: 103–127.CrossRefGoogle Scholar
  19. 19.
    Bishop, K.M., and D. Wahlsten. 1997. Sex differences in the human Corpus Callosum: Myth or reality? Neuroscience & Biobehavioral Reviews 21(5): 581–601.CrossRefGoogle Scholar
  20. 20.
    Kaiser, A., S. Haller, S. Schmitz, and C. Nitsch. 2009. On sex/gender related similarities and differences in fMRI language research. Brain Research Reviews 61: 49–59.CrossRefGoogle Scholar
  21. 21.
    Wallentin, M. 2009. Putative sex differences in verbal abilities and language cortex: A critical review. Brain and Language 108: 175–183.CrossRefGoogle Scholar
  22. 22.
    Fausto-Sterling, A. 2000. Sexing the body. Gender politics and the construction of sexuality. New York: Basic Books.Google Scholar
  23. 23.
    Beaulieu, A. 2002. Images are not the (only) truth: Brain mapping, visual knowledge, and iconoclasm. Science, Technology & Human Values 27(1): 53–86.CrossRefGoogle Scholar
  24. 24.
    Burri, R.V. 2008. Doing images. Zur Praxis medizinischer Bilder. Bielefeld: transcript.Google Scholar
  25. 25.
    Joyce, K. 2005. Appealing images: Magnetic resonance imaging and the production of authoritative knowledge. Social Studies of Sciences 35(3): 437–462.CrossRefGoogle Scholar
  26. 26.
    McCabe, D.P., and A.D. Castel. 2008. Seeing is believing: The effect of brain images on judgments of scientific reasoning. Cognition 107: 343–352.CrossRefGoogle Scholar
  27. 27.
    Haraway, D. 1991. A cyborg manifesto: Science, technology, and socialist-feminism in the late twentieth century. In Simians, cyborgs and women: The reinvention of nature, ed. D. Haraway, 149–181. New York: Routledge.Google Scholar
  28. 28.
    Barad, K. 2003. Posthumanist perfomativity: Toward an understanding of how matter comes to matter. Signs: Journal of Women in Culture and Society 28(3): 801–831.CrossRefGoogle Scholar
  29. 29.
    Wolpaw, J.R., N. Birbaumer, D.J. McFarlanda, G. Pfurtscheller, and T.M. Vaughan. 2002. Brain–computer interfaces for communication and control. Clinical Neurophysiology 113: 767–791.CrossRefGoogle Scholar
  30. 30.
    Karim, A.A., T. Hinterberger, J. Richter, J. Mellinger, N. Neumann, H. Flor, A. Kübler, and N. Birbaumer. 2006. Neural internet: Web surfing with brain potentials for the completely paralyzed. Neurorehabilitation and Neural Repair 20: 508–515.CrossRefGoogle Scholar
  31. 31.
    Birbaumer, N., N. Ghanayim, I.T. Hinterberger, B. Iversen, B. Kotchoubey, A. Kubler, J. Perelmouter, E. Taub, and H. Flor. 1999. A spelling device for the paralyzed. Nature 398: 297–298.CrossRefGoogle Scholar
  32. 32.
    Hochberg, L.R., M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, B. Almut, D. Chen, R.D. Penn, and J.P. Donoghue. 2006. Neural ensemble contol of prothetic devices by a human with tetraplegia. Nature 442: 64–172.CrossRefGoogle Scholar
  33. 33.
    Nicolelis, M.A. 2003. Brain–machine interfaces to restore motor function and probe neural circuits. Nature Reviews 4: 417–422.CrossRefGoogle Scholar
  34. 34.
    Nicolelis, M.A., and M.A. Lebedev. 2009. Principles of neural ensemble physiology underlying the operation of brain–machine interfaces. Nature Reviews Neurosciences 10: 530–540.CrossRefGoogle Scholar
  35. 35.
    Lebedev, M., and M.A. Nicolelis. 2006. Brain-machine interfaces: Past, present and future. Trends in Neuroscience 29(9): 536–546.CrossRefGoogle Scholar
  36. 36.
    Friedman, D., R. Leeb, G. Pfurtscheller, and M. Slater. Human-Computer Interaction Issues in Brain-Computer Interface and Virtual Reality. http://hmi.ewi.utwente.nl/chi2008/chi2008_files/friedman.pdf. Accessed 28. November 2010.
  37. 37.
    Laboratory of Brain-Computer Interfaces. http://bci.tugraz.at/index.html. Accessed 28. November 2010.
  38. 38.
    Edlinger, G., C. Groenegress, R. Prückl, C. Guger, M. Slater. 2010. Goal orientated Brain-Computer interfaces for Control: a virtual smart home application study. BMC Neuroscience 11 (Suppl 1): P134. http://www.biomedcentral.com/content/pdf/1471-2202-11-S1-P134.pdf. Accessed 28. November 2010.
  39. 39.
    g.tech Medical engineering. g.tec smart home control with Thoughts. http://www.gtec.at/Research/Videos. Accessed 28. November 2010.
  40. 40.
    Crutzen, C.K.M. 2005. Intelligent Ambience between Heaven and Hell. In The gender politics of ICT, ed. J. Archibald, J. Emms, F. Grundy, J. Payne, and E. Turner, 29–50. Middlesex: Middlesex Univ. Press.Google Scholar
  41. 41.
    Richard, J. 2008. A computer game headset that reads minds. 2008. Times Online 20.2.08. http://technology.timesonline.co.uk/tol/news/tech_and_web/article3402734.ece. Accessed 28. November 2010.
  42. 42.
    Emotiv Brain Computer Interface Technology. Epoc System. http://www.emotiv.com/. Accessed 28. November 2010.
  43. 43.
    Hoag, H. 2003. Remote control. Nature 423: 796–798.CrossRefGoogle Scholar
  44. 44.
    Ling, G. Revolutionizing Prosthetics. http://www.darpa.mil/dso/thrusts/bio/restbio_tech/revprost/index.htm. Accessed 28. November 2010.
  45. 45.
    Gibbs, A. 2008. Northrop Grumman-Led Team Awarded Contract to Develop Electronic Binoculars That Use Brain Activity to Detect Threats. Northrop Grumman News 06/08. http://www.es.northropgrumman.com/news/2008/06/144249_Northrop_Grumman-Led_Te.html. Accessed 28. November 2010.
  46. 46.
    Cook, P.S. 2004. The Modernistic Posthuman Prophecy of Donna Haraway. In Social Change in the 21st Century Conference, Centre for Social Change Research. Queensland University of Technology. http://eprints.qut.edu.au/646/1/cook_peta.pdf. Accessed 28. November 2010.
  47. 47.
    Wassermann, E.M., C. Epstein, U. Ziemann, V. Walsh, T. Paus, and S.H. Linsaby (eds.). 2008. The Oxford handbook of transcranial stimulation. Oxford: Oxford Univ. Press.Google Scholar
  48. 48.
    Birbaumer, N. 1999. Rain man’s revelations. Nature 399: 211–212.CrossRefGoogle Scholar
  49. 49.
    Snyder, A., H. Homayoun Bahramali, T. Hawker, and D. Lohn Mitchell. 2006. Savant-like numerosity skills revealed in normal people by magnetic pulses. Perception 35: 837–845.CrossRefGoogle Scholar
  50. 50.
    Hamilton, R., S. Messing, and A. Chatterjee. 2011. Retinking the thinking cap: Ehtics of neural enhancement using non-invasive brain stimulation. Neurology 76: 187–193.CrossRefGoogle Scholar
  51. 51.
    Karafyllis, N.C. 2008. Oneself as another? Autism and emotional intelligence as pop science, and the establishment of ‘essential’ differences. In Sexualized brains. Scientific modeling of emotional intelligence form a cultural perspective, ed. N.C. Karafyllis and G. Ulshöfer, 237–315. Cambridge: MIT.Google Scholar
  52. 52.
    Treffert, D.E. 2009. The savant syndrome: An extraordinary condition. A synopsis: past, present, future. Philosophical Transactions of the Royal Society 364: 1351–1357.CrossRefGoogle Scholar
  53. 53.
    Jordan-Young, R.M. 2010. Brain storm: The flaws in the science of sex differences. Cambridge: Harvard University Press.Google Scholar
  54. 54.
    Baron-Cohen, S. 2003. The essential difference: The truth about the male and female brain. New York: Basic Books.Google Scholar
  55. 55.
    Karafyllis, N.C. 2009. (M)othering the male brain. Das Geschlecht des technisierten Gehirns. In Die Technisierung des Gehirns. Ethische Aspekte aktueller Neurotechnologien, ed. J. Clausen and O. Müller. Paderborn: Mentis.Google Scholar
  56. 56.
    Haraway, D. 1988. Situated knowledges: The science question in feminism and the privilege of partial perspective. Feminist Studies 14(3): 575–599.CrossRefGoogle Scholar
  57. 57.
    Angel B., C. Pittenger, and E.R. Kandel. CREB, memory enhancement and the treatment of memory disorders: Promises, pitfalls and prospects. Informa Healthcare 7(1): 101–114.Google Scholar
  58. 58.
    Sahakian, B., and S. Morein-Zamir. 2007. Professors little helpers. Nature 450(20): 1157–1159.CrossRefGoogle Scholar
  59. 59.
    Greely, H., B. Sahakian, J. Harris, R.C. Kessler, M. Gazzaniga, P. Campbell, and M.J. Farah. 2008. Towards responsible use of cognitive-enhancing drugs by the healthy. Nature 456: 702–705.CrossRefGoogle Scholar
  60. 60.
    Wolpe, P.R. 2002. Treatment, enhancement, and the ethics of neurotherapeutics. Brain and Cognition 50(3): 387–395.CrossRefGoogle Scholar
  61. 61.
    Farah, M.J., J. Illez, R. Cook-Deegan, H. Gardner, E. Kandel, P. King, E. Parens, B. Sahakian, and P.R. Wolpe. 2004. Neurocognitive enhancement: What can we do and what should we do. Nature Reviews Neuroscience 5: 421–425.CrossRefGoogle Scholar
  62. 62.
    Farah, M.J., and P.R. Wolpe. 2004. Monitoring and manipulating brain function: New neuroscience technologies and their ethical implications. The Hastings Center Report 34(3): 35–45.CrossRefGoogle Scholar
  63. 63.
    Rose, N. 2007. The politics of life itself: Biomedicine, power, and subjectivity in the twenty-first century. Princeton: Princeton Univ. Press.Google Scholar
  64. 64.
    Bostrom, N., and A. Sandberg. 2009. Cognitive enhancement: Methods, ethics, regulatory challenges. Science and Engineering Ethics 15: 311–341.CrossRefGoogle Scholar
  65. 65.
    Singh, I. 2002. Bad boys, good mothers, and the “miracle” of Ritalin. Science in Context 15: 577–603.CrossRefGoogle Scholar
  66. 66.
    Blum, L.M., and N.F. Stracuzzi. 2004. Gender in the Prozac Nation: Popular discourse and productive femininity. Gender and Society 18(3): 269–286.CrossRefGoogle Scholar
  67. 67.
    Kurbjuweit, D., and G. Spörl. 2002. Schöner neuere Mensch. Spiegel Gespräch. Der Spiegel 21(2002): 122–128.Google Scholar
  68. 68.
    Scharper-Rinkel, P. 2004. Die neurowissenschaftliche Gouvernementalität. Re-Konfiguration von Geschlecht zwischen Formbarkeit, Abschaffung und Re-Essentialisierung. In Transformationen von Wissen, Mensch und Geschlecht, ed. I. Dölling, S. Hark, K. Esders, and C. Genschel, 94–208. Königstein: Helmer.Google Scholar
  69. 69.
    Kirsch, I., B.J. Deacon, T.B. Huedo-Medina, A. Scoboria, T.J. Moore, and B.T. Johnson. 2008. Initial severity and antidepressant benefits: A meta-analysis of data submitted to the food and drug administration. PLoS Medicine 5: 260–268.CrossRefGoogle Scholar
  70. 70.
    Braeutigam, S. 2005. Neuroeconomics ─ From neural systems to economic behaviour. Brain Research Bulletin 67: 355–360.CrossRefGoogle Scholar
  71. 71.
    Schmitz, S. 2011: Entscheidungsraum Gehirn: Neurokultur, Neuroökonomie und das cerebrale Subjekt. In Bioökonomien. Objekte, Praxen, Strukturen, ed. S. Lettow, in press, Bielefeld: transcript.Google Scholar
  72. 72.
    Sanfey, A.G., J.K. Rilling, J.A. Aronson, L.E. Nystrom, and J.D. Cohen. 2003. The neural basis of economic decision-making in the ultimatum game. Science 300: 1755–1758.CrossRefGoogle Scholar
  73. 73.
    Illouz, E. 2008. Emotional capital, therapeutic language, and the habitus of “the new man”. In Sexualized brains. Scientific modeling of emotional intelligence form a cultural perspective, ed. N.C. Karafyllis and G. Ulshöfer, 151–178. Cambridge: MIT.Google Scholar
  74. 74.
    Ulshöfer, G. 2008. The economic brain: Neuroeconomics and “post-autistic economics” through the lens of gender. In Sexualized brains. Scientific modeling of emotional intelligence form a cultural perspective, ed. N.C. Karafyllis and G. Ulshöfer, 191–220. Cambridge: MIT.Google Scholar
  75. 75.
    Häusel, H.-G. 2007. Neuromarketing mit Limbic®. Emotions- und Motivwelten im Gehirn des Kunden treffen. Innovation Management 3/2007.Google Scholar
  76. 76.
    Traindl, A. 2007. Neuromarketing am Point of Sale (POS): Mit Neuronen zu Millionen. In Neuromarketing: Erkenntnisse der Hirnforschung für Markenführung, Werbung und Verkauf, ed. H.-G. Häusel, 48–59. Freiburg: Haufe.Google Scholar
  77. 77.
    Haraway, D. 1992. The promise of monsters: A regenerative politics for inapproriate/d others. In Cultural studies, ed. L. Grossberg, C. Nelson, and P.A. Treichler, 295–337. New York: Routledge.Google Scholar
  78. 78.
    Boltanski, L., and E. Chiapello. 2005. The new spirit of capitalism. London: Verso.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Faculty of Social Sciences, Institute of Cultural and Social AnthropologyUniversity of ViennaViennaAustria

Personalised recommendations