, Volume 5, Issue 3, pp 295–303 | Cite as

The Sexed Brain: Between Science and Ideology

  • Catherine VidalEmail author
Original Paper


Despite tremendous advances in neuroscience, the topic “brain, sex and gender” remains a matter of misleading interpretations, that go well beyond the bounds of science. In the 19th century, the difference in brain sizes was a major argument to explain the hierarchy between men and women, and was supposed to reflect innate differences in mental capacity. Nowadays, our understanding of the human brain has progressed dramatically with the demonstration of cerebral plasticity. The new brain imaging techniques have revealed the role of the environment in continually re-shaping our brain all along our lifetimes as it goes through new experiences and acquires new knowledge. However, the idea that biology is a major determining factor for cognition and behavioral gender differentiation, is still very much alive. The media are far from being the only guilty party. Some scientific circles actively promote the idea of an innate origin of a gender difference in mental capacities. Experimental data from brain imaging, cognitive tests or genetics are often distorted to serve deterministic ideas. Such abuse of “scientific discourses” have to be counteracted by effective communication of clear and unbiased information to the citizens. This paper presents a critical analysis of selected examples which emphasize sex differences in three fields e.g. skills in language and mathematics, testosterone and financial risk-taking behavior, moral cognition. To shed light on the data and the methods used in some papers, we can now—with today’s knowledge on cerebral plasticity—challenge even more strongly, many false interpretations. Our goal here is double: we want to provide evidence against archaic beliefs about the biological determinism of sex differences but also promote a positive image of scientific research.


Sex Gender Brain Biological determinism Cerebral plasticity 



Many thanks to Michael Muszlak for English revisions.


  1. 1.
    Wilson, E.O. 1978. On human nature. Cambridge: Harvard University Press.Google Scholar
  2. 2.
    Pinker, S. 2002. The blank slate: The modern denial of human nature. New York: Viking.Google Scholar
  3. 3.
    Gould, S.J. 1981. The mismeasure of man. New York: Norton.Google Scholar
  4. 4.
    Rose, H., and S. Rose. 2000. Alas, poor Darwin. London: Jonathan Cape.Google Scholar
  5. 5.
    Rees, D., and S. Rose. 2004. The new brain sciences: Perils and prospects. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  6. 6.
    Rose, S. 2006. Lifelines: Biology, freedom, determinism. New York: Vintage Books.Google Scholar
  7. 7.
    Illes, J., and E. Racine. 2005. Imaging or imagining? A neuroethics challenge informed by genetics. American Journal of Bioethics 5: 1–14.Google Scholar
  8. 8.
    Illes, J., R. De Vries, M.K. Cho, and P. Schraedley-Desmond. 2006. ELSI priorities for brain imaging. American Journal of Bioethics 6: 24–31.Google Scholar
  9. 9.
    Racine, E., S. Waldman, J. Rosenberg, and J. Illes. 2010. Contemporary neuroscience in the media. Social Science & Medicine 71: 725–733.CrossRefGoogle Scholar
  10. 10.
    Ortega, F., and F. Vidal. 2007. Mapping the cerebral subject in contemporary culture. RECIIS 1: 255–259.Google Scholar
  11. 11.
    Choudhury, S., S.K. Nagel, and J. Slaby. 2009. Critical neuroscience: Linking neuroscience and society through critical practice. Biosocieties 4: 61–77.CrossRefGoogle Scholar
  12. 12.
    Frazzetto, G., and S. Anker. 2009. Neuroculture. Nature Reviews Neuroscience 10: 815–821.CrossRefGoogle Scholar
  13. 13.
    Illes, J., M.A. Moser, J.B. McCormick, E. Racine, S. Blakeslee, A. Caplan, E.C. Hayden, J. Ingram, T. Lohwater, P. McKnight, C. Nicholson, A. Phillips, K.D. Sauvé, E. Snell, and S. Weiss. 2010. Neurotalk: improving the communication of neuroscience research. Nature Reviews Neuroscience 11: 61–69.CrossRefGoogle Scholar
  14. 14.
    Broca, P. 1861. Sur le volume et la forme du cerveau suivant les individus et suivant les races. Bulletins de la Société d’Anthropologie 2: 139–446.Google Scholar
  15. 15.
    Maddox, J. 1992. How to publish the unpalatable? Nature 187: 358.Google Scholar
  16. 16.
    Schaller, F., F. Watrin, R. Sturny, A. Massacrier, P. Szepetowski, and F. Muscatelli. 2010. A single postnatal injection of oxytocin rescues the lethal feeding behaviour in mouse newborns deficient for the imprinted Magel2 gene. Human Molecular Genetics 19: 4895–4905.CrossRefGoogle Scholar
  17. 17.
    Ross, H.E., and L.J. Young. 2009. Oxytocin and the neural social cognition and affiliative behavior. Neuroendocrinology 30: 534–547.CrossRefGoogle Scholar
  18. 18.
    Jordan-Young, R. 2010. Brain storm: The flaws in the science of sex differences. Cambridge: Harvard University Press.Google Scholar
  19. 19.
    Vidal, C. 2005. Brain, sex and ideology. Diogenes 52: 127–133.CrossRefGoogle Scholar
  20. 20.
    Gaser, C., and G. Schlaug. 2003. Brain structures differ between musicians and non-musicians. Journal of Neuroscience 23: 9240–9245.Google Scholar
  21. 21.
    Maguire, E.M., D.G. Gadian, I.S. Johnsrude, C.D. Good, J. Ashburner, R. Frackowiak, and C. Frith. 2000. Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America 97: 4398–4403.CrossRefGoogle Scholar
  22. 22.
    Draganski, B., C. Gaser, V. Busch, G. Schuierer, U. Bogdahn, and A. Draganski. 2004. Neuroplasticity: changes in grey matter induced by training. Nature 427: 311–312.CrossRefGoogle Scholar
  23. 23.
    Guye, M., F. Bartolomei, and J.P. Ranjeva. 2008. Imaging structural and functional connectivity towards a united definition of human brain organization? Current Opinion in Neurology 21: 393–403.CrossRefGoogle Scholar
  24. 24.
    Lee, B., J.Y. Park, W.H. Jung, H.S. Kim, J.S. Oh, C.H. Choi, J.H. Jang, D.H. Kang, and J.S. Kwon. 2010. White matter neuroplastic changes in long-term trained players of the game of “Baduk”1 (GO): A voxel-based diffusion-tensor imaging study. NeuroImage 52: 9–19.CrossRefGoogle Scholar
  25. 25.
    Takeuchi, H., A. Sekiguchi, Y. Taki, S. Yokoyama, Y. Yomogida, N. Komuro, T. Yamanouchi, S. Suzuki, and R. Kawashima. 2010. Training of working memory impacts structural connectivity. Journal of Neuroscience 30: 3297–3303.CrossRefGoogle Scholar
  26. 26.
    Pereira, A.C., D.E. Huddleston, A.M. Brickman, A.A. Sosunov, R. Hen, G.M. McKhann, R. Sloan, F.H. Gage, T.R. Brown, and S.A. Small. 2007. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America 104: 5638–5643.CrossRefGoogle Scholar
  27. 27.
    Olesen, P.J., H. Westerberg, and T. Klingberg. 2004. Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience 7: 75–79.CrossRefGoogle Scholar
  28. 28.
    Nithianantharajah, J., and A.J. Hannan. 2006. Enriched environments, experience dependent plasticity and disorders of the nervous system. Nature Reviews Neuroscience 7: 697–709.CrossRefGoogle Scholar
  29. 29.
    Fausto-Sterling, A. 1992. Myths of gender. New York: Basic Books.Google Scholar
  30. 30.
    Fausto-Sterling, A. 2000. Sexing the body: gender politics and the construction of sexuality. New York: Basic Books.Google Scholar
  31. 31.
    Fine, C. 2010. Delusions of gender. London: Icon Books.Google Scholar
  32. 32.
    Kaiser, A., S. Haller, S. Schmitz, and C. Nitsch. 2009. On sex/gender related similarities and differences in fMRI language research. Brain Research Reviews 61: 49–59.CrossRefGoogle Scholar
  33. 33.
    Sommer, I., A. Aleman, A. Bouma, and R. Kahn. 2004. Do women really have more bilateral langage representation than men? A meta-analysis of functional imagind studies. Brain 127: 1845–1852.CrossRefGoogle Scholar
  34. 34.
    Voyer, D., S. Voyer, and M.P. Bryden. 1995. Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin 117: 250–270.CrossRefGoogle Scholar
  35. 35.
    Coluccia, E., and G. Louse. 2004. Gender differences in spatial orientation: A review. Journal of Environmental Psychology 24: 329–340.CrossRefGoogle Scholar
  36. 36.
    Hyde, J.S. 2005. The gender similarities hypothesis. American Psychologist 60: 581–592.CrossRefGoogle Scholar
  37. 37.
    Rilea, S.L. 2008. A lateralization of function approach to sex differences in spatial ability: a reexamination. Brain Cognition 67: 168–182.CrossRefGoogle Scholar
  38. 38.
    Koscik, T., D. O’Leary, D.J. Moser, N.C. Andreasen, and P. Nopoulos. 2009. Sex differences in parietal lobe morphology: relationship to mental rotation performance. Brain and Cognition 69: 451–459.CrossRefGoogle Scholar
  39. 39.
    Schmader, T., M. Johns, and C. Forbes. 2008. An integrated process model of stereotype threat effects on performance. Psychological Review 115: 336–356.CrossRefGoogle Scholar
  40. 40.
    Massa, L.J., R.E. Mayer, and L.M. Bohon. 2005. Individual differences in gender role beliefs influence spatial ability test performance. Learning and Individual Differences 15: 99–101.CrossRefGoogle Scholar
  41. 41.
    Geary, D.C. 1996. Sexual selection and sex differences in mathematical abilities. Behavioral & Brain Sciences 19: 229–284.CrossRefGoogle Scholar
  42. 42.
    Halpern, D.F., C.P. Benbow, D.C. Geary, R.C. Gur, J.S. Hyde, and M.A. Gernsbacher. 2007. The science of sex differences in science and mathematics. Psychological Science Public Interest 8: 1–51.Google Scholar
  43. 43.
    Connellan, J., S. Baron-Cohen, S. Wheelwright, A. Batki, and J. Ahluwalia. 2000. Sex differences in human neonatal social perception. Infant Behavior & Development 23: 113–118.CrossRefGoogle Scholar
  44. 44.
    Benbow, C.P., and J.C. Stanley. 1980. Sex differences in mathematical ability: Fact or artifact? Science 210: 1262–1264.CrossRefGoogle Scholar
  45. 45.
    Newcombe, N.S. 2002. The nativist-empiricist controversy in the context of recent research on spatial and quantitative development. Psychological Science 13: 395–401.CrossRefGoogle Scholar
  46. 46.
    Feigenson, L., S. Dehaene, and E.S. Spelke. 2004. Core systems of number. Trends in Cognitive Sciences 8: 307–314.CrossRefGoogle Scholar
  47. 47.
    Hyde, J.S., and M.C. Linn. 2006. Gender similarities in mathematics and science. Science 314: 599–600.CrossRefGoogle Scholar
  48. 48.
    Spelke, E.S. 2005. Sex differences in intrinsic aptitudes for mathematics and science ? A critical review. American Psychologist 60: 950–958.CrossRefGoogle Scholar
  49. 49.
    Hyde, J., S. Linberg, M. Linn, A. Ellis, and C. Williams. 2008. Gender similarities characterize maths performance. Science 321: 494–495.CrossRefGoogle Scholar
  50. 50.
    Guiso, L., F. Monte, P. Sapienza, and L. Zingales. 2008. Culture, gender, and maths. Science 320: 1164–1165.CrossRefGoogle Scholar
  51. 51.
    Archer, J. 2006. Testosterone and human aggression: an evaluation of the challenge hypothesis. Neuroscience Biobehavioral Review 30: 319–345.CrossRefGoogle Scholar
  52. 52.
    Beauchet, O. 2006. Testosterone and cognitive function: current clinical evidence of a relationship. European Journal of Endocrinology 155: 773–781.CrossRefGoogle Scholar
  53. 53.
    Cohen-Bendahan, C.C., C. van de Beek, and S.A. Berenbaum. 2005. Prenatal sex hormone effects on child and adult sex-typed behavior: methods and findings. Neuroscience Biobehavioral Review 29: 353–384.CrossRefGoogle Scholar
  54. 54.
    Collaer, M.L., and M. Hines. 1995. Human behavioral sex differences: A role for gonadal hormones during early development? Psychological Bulletin 118: 55–107.CrossRefGoogle Scholar
  55. 55.
    Money, J., and A.E. Ehrhardt. 1971. Man and woman, boy and girl: the differentiation and dimorphism of gender identity from conception to maturity. Oxford: Johns Hopkins University Press.Google Scholar
  56. 56.
    Goy, R.W., and B.S. McEwen. 1980. Sexual differentiation of the brain. Cambridge (Mass): MIT Press.Google Scholar
  57. 57.
    Coates, J.M., and J. Herbert. 2008. Endogenous steroids anf financial risk taking on a London trading floor. Proceedings of the National Academy of Sciences of the United States of America 105: 6167–6172.CrossRefGoogle Scholar
  58. 58.
    Zethraeus, N., L. Kocoska-Maras, T. Ellingsen, B. von Schoultz, A.L. Hirschberg, and M. Johannesson. 2009. A randomized trial of the effect of estrogen and testosterone on economic behavior. Proceedings of the National Academy of Sciences of the United States of America 106: 6525–6538.CrossRefGoogle Scholar
  59. 59.
    Harenski, C., O. Antonenko, M. Shane, and K. Kiehl. 2008. Gender differences in neural mechanisms underlying moral sensitivity. SCAN 3: 313–321.Google Scholar
  60. 60.
    Van Horn, J.D., and R.A. Poldrack. 2009. Functional MRI at the crossroads. International Journal of Psychophysiology 73: 3–9.CrossRefGoogle Scholar
  61. 61.
    Roskies, A. 2002. Neuroethics for the new millenium. Neuron 35: 21–23.CrossRefGoogle Scholar
  62. 62.
    Moreno, J.D. 2003. Neuroethics: An agenda for neuroscience and society. Nature 4: 149–153.Google Scholar
  63. 63.
    Illes, J., C. Blakemore, M.G. Hansson, T.K. Hensch, A. Leshner, G. Maestre, P. Magistretti, R. Quirion, and P. Strata. 2005. International perspectives on engaging the public in neuroethics. Nature Reviews Neuroscience 6: 977–982.CrossRefGoogle Scholar
  64. 64.
    Racine, E., O. Bar-Ilan, and J. Illes. 2005. fMRI in the public eye. Nature Reviews Neuroscience 6: 159–164.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Pasteur InstituteParisFrance

Personalised recommendations