Mild Cognitive Impairment – MCI

Ist die MCI ein klinisches Vorstadium der Alzheimerdemenz?
  • Cathleen Hänse
  • Wolf-Dieter Heiss
Aktuelles

Referenzen

  1. Andlin-Sobocki P, Jonsson B, Wittchen HU, Olesen J. Cost of disorders of the brain in Europe. Eur J Neurol 2005,12 Suppl 1:1–27PubMedCrossRefGoogle Scholar
  2. Jonsson L, Berr C. Cost of dementia in Europe. Eur J Neurol 2005,12 Suppl 1:50–53PubMedCrossRefGoogle Scholar
  3. DeCarli C. Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment. Lancet Neurol 2003,2:15–21PubMedCrossRefGoogle Scholar
  4. Kral VA. Senescent forgetfulness: benign and malignant. Can Med Assoc J 1962,86:257–260PubMedGoogle Scholar
  5. Crook T, Bartus R, Ferries S. Age-associated memory impairment: proposed diagnostic criteria and measures of change. Dev Neuropsychol 1986,2:295–306Google Scholar
  6. Blackford RC, La Rue A. Criteria for diagnosing age-associated memory impairment: proposed improvements in the field. Dev Neuropsychol 1989,5:295–306CrossRefGoogle Scholar
  7. Levy R. Aging-associated cognitive decline. Working Party of the International Psychogeriatric Association in collaboration with the World Health Organization. Int Psychogeriatr 1994,6:63–68PubMedCrossRefGoogle Scholar
  8. Graham JE, Rockwood K, Beattie BL, Eastwood R, Gauthier S, Tuokko H, McDowell I. Prevalence and severity of cognitive impairment with and without dementia in an elderly population. Lancet 1997,349:1793–1796PubMedCrossRefGoogle Scholar
  9. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999,56:303–308PubMedCrossRefGoogle Scholar
  10. Goldman WP, Morris JC. Evidence that age-associated memory impairment is not a normal variant of aging. Alzheimer Dis Assoc Disord 2001,15:72–79PubMedCrossRefGoogle Scholar
  11. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Kokmen E, Tangelos EG. Aging, memory, and mild cognitive impairment. Int Psychogeriatr 1997,9 Suppl 1:65–69PubMedCrossRefGoogle Scholar
  12. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med 2004,256:183–194PubMedCrossRefGoogle Scholar
  13. Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, et al. Current concepts in mild cognitive impairment. Arch Neurol 2001,58:1985–1992PubMedCrossRefGoogle Scholar
  14. Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, et al. Mild cognitive impairment. Lancet 2006,367:1262–1270PubMedCrossRefGoogle Scholar
  15. Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, et al. Mild cognitive impairment – beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 2004,256:240–246PubMedCrossRefGoogle Scholar
  16. Artero S, Tierney MC, Touchon J, Ritchie K. Prediction of transition from cognitive impairment to senile dementia: a prospective, longitudinal study. Acta Psychiatr Scand 2003,107:390–393PubMedCrossRefGoogle Scholar
  17. Chen P, Ratcliff G, Belle SH, Cauley JA, DeKosky ST, Ganguli M. Cognitive tests that best discriminate between presymptomatic AD and those who remain nondemented. Neurology 2000,55:1847–1853PubMedGoogle Scholar
  18. Carr DB, Gray S, Baty J, Morris JC. The value of informant versus individual’s complaints of memory impairment in early dementia. Neurology 2000,55:1724–1726PubMedGoogle Scholar
  19. Andreasen N, Sjogren M, Blennow K. CSF markers for Alzheimer’s disease: total tau, phospho-tau and Abeta42. World J Biol Psychiatry 2003,4:147–155PubMedCrossRefGoogle Scholar
  20. Blennow K, Hampel H. CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2003,2:605–613PubMedCrossRefGoogle Scholar
  21. Fellgiebel A, Siessmeier T, Scheurich A, Winterer G, Bartenstein P, Schmidt LG, Muller MJ. Association of elevated phospho-tau levels with Alzheimer-typical 18F-fluoro-2-deoxy-D-glucose positron emission tomography findings in patients with mild cognitive impairment. Biol Psychiatry 2004,56:279–283PubMedCrossRefGoogle Scholar
  22. de Leon MJ, DeSanti S, Zinkowski R, Mehta PD, Pratico D, Segal S, et al. Longitudinal CSF and MRI biomarkers improve the diagnosis of mild cognitive impairment. Neurobiol Aging 2006,27:394–401PubMedCrossRefGoogle Scholar
  23. Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 2006,5:228–234PubMedCrossRefGoogle Scholar
  24. Herukka SK, Hallikainen M, Soininen H, Pirttila T. CSF Abeta42 and tau or phosphorylated tau and prediction of progressive mild cognitive impairment. Neurology 2005,64:1294–1297PubMedGoogle Scholar
  25. Parnetti L, Lanari A, Silvestrelli G, Saggese E, Reboldi P. Diagnosing prodromal Alzheimer’s disease: role of CSF biochemical markers. Mech Ageing Dev 2006,127:129–132PubMedCrossRefGoogle Scholar
  26. Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR, et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 2006,59:512–519PubMedCrossRefGoogle Scholar
  27. Drzezga A, Grimmer T, Riemenschneider M, Lautenschlager N, Siebner H, Alexopoulus P, et al. Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F-FDG PET. J Nucl Med 2005,46:1625–1632PubMedGoogle Scholar
  28. Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S, et al. Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med 1996,334:752–758PubMedCrossRefGoogle Scholar
  29. Fleisher A, Grundman M, Jack CR, Jr., Petersen RC, Taylor C, Kim HT, et al. Sex, apolipoprotein E epsilon 4 status, and hippocampal volume in mild cognitive impairment. Arch Neurol 2005,62:953–957PubMedCrossRefGoogle Scholar
  30. De Santi S, de Leon MJ, Rusinek H, Convit A, Tarshish CY, Roche A, et al. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging 2001,22:529–539PubMedCrossRefGoogle Scholar
  31. deToledo-Morrell L, Stoub TR, Bulgakova M, Wilson RS, Bennett DA, Leurgans S, et al. MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiol Aging 2004,25:1197–1203PubMedCrossRefGoogle Scholar
  32. Korf ES, Wahlund LO, Visser PJ, Scheltens P. Medial temporal lobe atrophy on MRI predicts dementia in patients with mild cognitive impairment. Neurology 2004,63:94–100PubMedGoogle Scholar
  33. Stoub TR, Bulgakova M, Leurgans S, Bennett DA, Fleischman D, Turner DA, deToledo-Morrell L. MRI predictors of risk of incident Alzheimer disease: a longitudinal study. Neurology 2005,64:1520–1524PubMedCrossRefGoogle Scholar
  34. Szelies B, Grond M, Herholz K, Kessler J, Wullen T, Heiss WD. Quantitative EEG mapping and PET in Alzheimer’s disease. J Neurol Sci 1992,110:46–56PubMedCrossRefGoogle Scholar
  35. Koenig T, Prichep L, Dierks T, Hubl D, Wahlund LO, John ER, Jelic V. Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 2005,26:165–171PubMedCrossRefGoogle Scholar
  36. Modrego PJ, Fayed N, Pina MA. Conversion from mild cognitive impairment to probable Alzheimer’s disease predicted by brain magnetic resonance spectroscopy. Am J Psychiatry 2005,162:667–675PubMedCrossRefGoogle Scholar
  37. Herholz K, Herscovitch P, Heiss WD. NeuroPET – Positron Emission Tomography in Neuroscience and Clinical Neurology. Berlin: Springer; 2004Google Scholar
  38. Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frolich L, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 2002,17:302–316PubMedCrossRefGoogle Scholar
  39. Anchisi D, Borroni B, Franceschi M, Kerrouche N, Kalbe E, Beuthien-Beumann B, et al. Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch Neurol 2005,62:1728–1733PubMedCrossRefGoogle Scholar
  40. Chetelat G, Desgranges B, de la Sayette V, Viader F, Eustache F, Baron JC. Mild cognitive impairment: Can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology 2003,60:1374–1377PubMedGoogle Scholar
  41. de Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, Rusinek H, et al. Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/positron-emission tomography (FDG/PET). Proc Natl Acad Sci U S A 2001,98:10966–10971PubMedCrossRefGoogle Scholar
  42. Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 2003,30:1104–1113PubMedCrossRefGoogle Scholar
  43. Herholz K, Nordberg A, Salmon E, Perani D, Kessler J, Mielke R, et al. Impairment of neocortical metabolism predicts progression in Alzheimer’s disease. Dement Geriatr Cogn Disord 1999,10:494–504PubMedCrossRefGoogle Scholar
  44. Jagust W, Gitcho A, Sun F, Kuczynski B, Mungas D, Haan M. Brain imaging evidence of preclinical Alzheimer’s disease in normal aging. Ann Neurol 2006,59:673–681PubMedCrossRefGoogle Scholar
  45. Herholz K, Weisenbach S, Zundorf G, Lenz O, Schroder H, Bauer B, et al. In vivo study of acetylcholine esterase in basal forebrain, amygdala, and cortex in mild to moderate Alzheimer disease. Neuroimage 2004,21:136–143PubMedCrossRefGoogle Scholar
  46. Herholz K, Weisenbach S, Kalbe E, Diederich NJ, Heiss WD. Cerebral acetylcholine esterase activity in mild cognitive impairment. Neuroreport 2005,16:1431–1434PubMedCrossRefGoogle Scholar
  47. Mathis CA, Wang Y, Holt DP, Huang GF, Debnath ML, Klunk WE. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem 2003,46:2740–2754PubMedCrossRefGoogle Scholar
  48. Smid LM, Vovko TD, Popovic M, Petric A, Kepe V, Barrio JR, et al. The 2,6-disubstituted naphthalene derivative FDDNP labeling reliably predicts Congo red birefringence of protein deposits in brain sections of selected human neurodegenerative diseases. Brain Pathol 2006,16:124–130PubMedCrossRefGoogle Scholar
  49. Huddleston DE, Small SA. Technology insight: imaging amyloid plaques in the living brain with positron emission tomography and MRI. Nat Clin Pract Neurol 2005,1:96–105PubMedCrossRefGoogle Scholar
  50. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 2004,55:306–319PubMedCrossRefGoogle Scholar
  51. Mintun MA, Larossa GN, Sheline YI, Dence CS, Lee SY, Mach RH, et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 2006,67:446–452PubMedCrossRefGoogle Scholar
  52. Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab 2005,25:1528–1547PubMedCrossRefGoogle Scholar
  53. Petersen RC, Morris JC. Mild cognitive impairment as a clinical entity and treatment target. Arch Neurol 2005,62:1160–1163; discussion 1167PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Cathleen Hänse
    • 1
  • Wolf-Dieter Heiss
    • 1
  1. 1.Max-Planck-Inst. f. neurologische ForschungKöln

Personalised recommendations