Advertisement

An assessment of bone-seeking radionuclides for palliation of metastatic bone pain in a vertebral model

  • Alireza SadremomtazEmail author
  • Mahboubeh Masoumi
Original Article
  • 24 Downloads

Abstract

Objective

Bone-seeking radiopharmaceuticals have the main role in the treatment of painful bone metastases. The aim of this study was to dosimetrically compare radiopharmaceuticals in use for bone pain palliation therapy and bone scan.

Methods

The MCNPX code was used to simulate the radiation transport in a vertebral phantom. Absorbed fractions were calculated for monoenergetic electrons, photons and alpha particles. S values were obtained for radionuclides 32P, 33P, 89Sr, 90Y, 99mTc, 117mSn, 153Sm, 166Ho, 169Er, 177Lu, 186Re, 188Re, 223Ra, 224Ra and their progenies for target regions including the active marrow and the bone endosteum.

Results

The results demonstrated the dependence of dosimetric parameters on the source or target size, particle energy and location of the source. The electron emitters including 33P, 117mSn, 169Er and 177Lu and 223Ra as an α-emitter gave the lower absorbed dose to the active marrow. These radionuclides gave the highest values of the Relative Advantage Factor (RAF).

Conclusions

According to the results, 33P, 117mSn, 169Er, 177Lu and 223Ra have fewer side effects on the active marrow than other investigated radionuclides. Therefore, these radionuclides may be a better choice for use in palliative radiotherapy.

Keywords

Bone metastases Pain palliation Radionuclide therapy Bone dosimetry β-Emitters α-Emitters 

Notes

References

  1. 1.
    Ferreira S, Dormehl I, Botelho MF. Radiopharmaceuticals for bone metastasis therapy and beyond: a voyage from the past to the present and a look to the future. Cancer Biother Radiopharm. 2012;27(9):535–51.CrossRefGoogle Scholar
  2. 2.
    Tomasian A, Wallace A, Northrup B, Hillen T, Jennings J. Spine cryoablation: pain palliation and local tumor control for vertebral metastases. Am J Neuroradiol. 2016;37(1):189–95.CrossRefGoogle Scholar
  3. 3.
    Finlay IG, Mason MD, Shelley M. Radioisotopes for the palliation of metastatic bone cancer: a systematic review. Lancet Oncol. 2005;6(6):392–400.CrossRefGoogle Scholar
  4. 4.
    Nguyen J, Chow E, Zeng L, Zhang L, Culleton S, Holden L, et al. Palliative response and functional interference outcomes using the Brief Pain Inventory for spinal bony metastases treated with conventional radiotherapy. J Clin Oncol. 2011;23(7):485–91.CrossRefGoogle Scholar
  5. 5.
    Ayati N, Aryana K, Jalilian A, Hoseinnejad T, Samani AB, Ayati Z, et al. Treatment efficacy of 153Sm-EDTMP for painful bone metastasis. Asia Ocean J Nucl Med Biol. 2013;1(1):27.Google Scholar
  6. 6.
    Baccelli I, Trumpp A. The evolving concept of cancer and metastasis stem cells. J Cell Biol. 2012;198(3):281–93.CrossRefGoogle Scholar
  7. 7.
    Niwa O, Barcellos-Hoff M, Globus R, Harrison J, Hendry J, Jacob P, et al. ICRP Publication 131: stem cell biology with respect to carcinogenesis aspects of radiological protection. Ann ICRP. 2015;44(3–4):7–357.CrossRefGoogle Scholar
  8. 8.
    Goyal J, Antonarakis ES. Bone-targeting radiopharmaceuticals for the treatment of prostate cancer with bone metastases. Cancer Lett. 2012;323(2):135–46.CrossRefGoogle Scholar
  9. 9.
    Gudkov SV, Shilyagina NY, Vodeneev VA, Zvyagin AV. Targeted radionuclide therapy of human tumors. Int J Mol Sci. 2015;17(1):33.CrossRefGoogle Scholar
  10. 10.
    Breen SL, Powe J, Porter A. Dose estimation in strontium-89 radiotherapy of metastatic prostatic carcinoma. J Nucl Med. 1992;33(7):1316–23.Google Scholar
  11. 11.
    Pandit-Taskar N, Batraki M, Divgi CR. Radiopharmaceutical therapy for palliation of bone pain from osseous metastases. J Nucl Med. 2004;45(8):1358–65.Google Scholar
  12. 12.
    Serafini AN. Therapy of metastatic bone pain. J Nucl Med. 2001;42(6):895–906.Google Scholar
  13. 13.
    Dolezal J, Vizda J, Odrazka K. Prospective evaluation of samarium-153-EDTMP radionuclide treatment for bone metastases in patients with hormone-refractory prostate cancer. Urol Int. 2007;78(1):50–7.CrossRefGoogle Scholar
  14. 14.
    Holmes RA. [153Sm] EDTMP: a potential therapy for bone cancer pain. Semin Nucl Med. 1992;22(1):41–5.CrossRefGoogle Scholar
  15. 15.
    Lass P. Radionuclide treatment of bone metastases: current concepts and trends. Nucl Med Rev Cent East Eur. 2001;4(1):1–4.Google Scholar
  16. 16.
    Srivastava SC, Mausner LF. Therapeutic radionuclides: production, physical characteristics, and applications. In: Baum R, editor. Therapeutic nuclear medicine. Berlin: Springer; 2013. p. 11–50.CrossRefGoogle Scholar
  17. 17.
    Das T, Banerjee S. Radiopharmaceuticals for metastatic bone pain palliation: available options in the clinical domain and their comparisons. Clin Exp Metastasis. 2017;34:1–10.CrossRefGoogle Scholar
  18. 18.
    Liberal FDG, Tavares AAS, Tavares JMR. Palliative treatment of metastatic bone pain with radiopharmaceuticals: a perspective beyond strontium-89 and samarium-153. Appl Radiat Isot. 2016;110:87–99.CrossRefGoogle Scholar
  19. 19.
    Srivastava SC. The role of electron-emitting radiopharmaceuticals in the palliative treatment of metastatic bone pain and for radiosynovectomy: applications of conversion electron emitter Tin-117m. Braz Arch Biol Technol. 2007;50(SPE):49–62.CrossRefGoogle Scholar
  20. 20.
    Pietrzak A, Czepczynski R, Wierzchoslawska E, Cholewinski W. Metabolic activity in bone metastases of breast and prostate cancer were similar as studied by 18F-FDG PET/CT. The role of 99mTc-MDP. Hell J Nucl Med. 2017;20(3):237–40.Google Scholar
  21. 21.
    Thomas L, Balmus C, Ahmadzadehfar H, Essler M, Strunk H, Bundschuh RA. Assessment of bone metastases in patients with prostate cancer—a comparison between 99mTc-bone-scintigraphy and [68Ga] Ga-PSMA PET/CT. Pharmaceuticals. 2017;10(3):68.CrossRefGoogle Scholar
  22. 22.
    Tsubota K-i, Adachi T, Tomita Y. Effects of a fixation screw on trabecular structural changes in a vertebral body predicted by remodeling simulation. Ann Biomed Eng. 2003;31(6):733–40.CrossRefGoogle Scholar
  23. 23.
    Kvinnsland Y, Skretting A, Bruland ØS. Radionuclide therapy with bone-seeking compounds: Monte Carlo calculations of dose-volume histograms for bone marrow in trabecular bone. Phys Med Biol. 2001;46(4):1149.CrossRefGoogle Scholar
  24. 24.
    Nie H, Richardson RB. Radiation dose to trabecular bone marrow stem cells from 3H, 14C and selected α-emitters incorporated in a bone remodeling compartment. Phys Med Biol. 2009;54(4):963.CrossRefGoogle Scholar
  25. 25.
    Mosekilde L. Sex differences in age-related loss of vertebral trabecular bone mass and structure—biomechanical consequences. Bone. 1989;10(6):425–32.CrossRefGoogle Scholar
  26. 26.
    White D, Woodard H, Hammond S. Average soft-tissue and bone models for use in radiation dosimetry. Br J Radiol. 1987;60(717):907–13.CrossRefGoogle Scholar
  27. 27.
    White G, Wilson I. Photon, electron, proton and neutron interaction data for body tissues. ICRU Report 46. 1992.Google Scholar
  28. 28.
    Pelowitz DB. MCNPXTM user’s manual. Los Alamos: Los Alamos National Laboratory; 2005.Google Scholar
  29. 29.
    Eckerman KF, Endo A. MIRD: radionuclide data and decay schemes. Reston: SNMMI; 1989.Google Scholar
  30. 30.
    Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet no. 21: a generalized schema for radiopharmaceutical dosimetry—standardization of nomenclature. J Nucl Med. 2009;50(3):477–84.CrossRefGoogle Scholar
  31. 31.
    Bouchet LG, Bolch WE, Goddu SM, Howell RW, Rao DV. Considerations in the selection of radiopharmaceuticals for palliation of bone pain from metastatic osseous lesions. J Nucl Med. 2000;41(4):682.Google Scholar
  32. 32.
    Dant JT, Richardson RB, Nie LH. Monte Carlo simulation of age-dependent radiation dose from alpha- and beta-emitting radionuclides to critical trabecular bone and bone marrow targets. Phys Med Biol. 2013;58(10):3301.CrossRefGoogle Scholar
  33. 33.
    Guerra Liberal FD, Tavares AAS, Tavares JMR. Comparative analysis of 11 different radioisotopes for palliative treatment of bone metastases by computational methods. Med Phys. 2014;41(11):114101.  CrossRefGoogle Scholar
  34. 34.
    Henriksen G, Breistøl K, Bruland ØS, Fodstad Ø, Larsen RH. Significant antitumor effect from bone-seeking, α-particle-emitting 223Ra demonstrated in an experimental skeletal metastases model. Cancer Res. 2002;62(11):3120–5.Google Scholar
  35. 35.
    Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine E-book. Amsterdam: Elsevier Health Sciences; 2012.Google Scholar
  36. 36.
    Knoll GF. Radiation detection and measurement. New York: Wiley; 2010.Google Scholar
  37. 37.
    Bernhardt P, Benjegård SA, Kölby L, Johanson V, Nilsson O, Ahlman H, et al. Dosimetric comparison of radionuclides for therapy of somatostatin receptor-expressing tumors. Int J Radiat Oncol Biol Phys. 2001;51(2):514–24.CrossRefGoogle Scholar
  38. 38.
    Jackson M, Falzone N, Vallis K. Advances in anticancer radiopharmaceuticals. J Clin Oncol. 2013;25(10):604–9.CrossRefGoogle Scholar
  39. 39.
    Syme A, Kirkby C, Riauka T, Fallone B, McQuarrie S. Monte Carlo investigation of single cell beta dosimetry for intraperitoneal radionuclide therapy. Phys Med Biol. 2004;49(10):1959.CrossRefGoogle Scholar
  40. 40.
    Henriksen G, Fisher DR, Roeske JC, Bruland ØS, Larsen RH. Targeting of osseous sites with α-emitting 223Ra: comparison with the β-emitter 89Sr in mice. J Nucl Med. 2003;44(2):252–9.Google Scholar
  41. 41.
    Hough M, Johnson P, Rajon D, Jokisch D, Lee C, Bolch W. An image-based skeletal dosimetry model for the ICRP reference adult male—internal electron sources. Phys Med Biol. 2011;56(8):2309.CrossRefGoogle Scholar
  42. 42.
    Peter J, Tornai MP, Jaszczak RJ. Analytical versus voxelized phantom representation for Monte Carlo simulation in radiological imaging. IEEE Trans Med Imaging. 2000;19(5):556–64.CrossRefGoogle Scholar
  43. 43.
    Watchman CJ, Jokisch DW, Patton PW, Rajon DA, Sgouros G, Bolch WE. Absorbed fractions for α-particles in tissues of trabecular bone: considerations of marrow cellularity within the ICRP reference male. J Nucl Med. 2005;46(7):1171–85.Google Scholar
  44. 44.
    Sartor O. Overview of samarium sm 153 lexidronam in the treatment of painful metastatic bone disease. Rev Urol. 2004;6(Suppl 10):3.Google Scholar
  45. 45.
    Sgouros G, Roeske JC, McDevitt MR, Palm S, Allen BJ, Fisher DR, et al. MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of α-particle emitters for targeted radionuclide therapy. J Nucl Med. 2010;51(2):311–28.CrossRefGoogle Scholar
  46. 46.
    Agarwal KK, Singla S, Arora G, Bal C. 177Lu-EDTMP for palliation of pain from bone metastases in patients with prostate and breast cancer: a phase II study. Eur J Nucl Med Mol Imaging. 2015;42(1):79–88.CrossRefGoogle Scholar
  47. 47.
    Harrison MR, Wong TZ, Armstrong AJ, George DJ. Radium-223 chloride: a potential new treatment for castration-resistant prostate cancer patients with metastatic bone disease. Cancer Manag Res. 2013;5:1.CrossRefGoogle Scholar
  48. 48.
    Larsen RH, Saxtorph H, Skydsgaard M, BORREBÆK J, JONASDOTTIR TJ, BRULAND ØS, et al. Radiotoxicity of the alpha-emitting bone-seeker 223Ra injected intravenously into mice: histology, clinical chemistry and hematology. In Vivo. 2006;20(3):325–31.Google Scholar
  49. 49.
    Nilsson S, Strang P, Aksnes A, Franzèn L, Olivier P, Pecking A, et al. A randomized, dose–response, multicenter phase II study of radium-223 chloride for the palliation of painful bone metastases in patients with castration-resistant prostate cancer. Eur J Cancer. 2012;48(5):678–86.CrossRefGoogle Scholar
  50. 50.
    Pacilio M, Ventroni G, De Vincentis G, Cassano B, Pellegrini R, Di Castro E, et al. Dosimetry of bone metastases in targeted radionuclide therapy with alpha-emitting 223Ra-dichloride. Eur J Nucl Med Mol Imaging. 2016;43(1):21–33.CrossRefGoogle Scholar
  51. 51.
    Hobbs RF, Song H, Watchman CJ, Bolch WE, Aksnes A-K, Ramdahl T, et al. A bone marrow toxicity model for 223Ra alpha-emitter radiopharmaceutical therapy. Phys Med Biol. 2012;57(10):3207.CrossRefGoogle Scholar
  52. 52.
    Hindorf C, Glatting G, Chiesa C, Lindén O, Flux G. EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging. 2010;37(6):1238–50.CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Nuclear Medicine 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceUniversity of GuilanRashtIran

Personalised recommendations