Advertisement

Annals of Nuclear Medicine

, Volume 32, Issue 10, pp 702–708 | Cite as

Preliminary feasibility study on differential diagnosis between radiation-induced cerebral necrosis and recurrent brain tumor by means of [18F]fluoro-borono-phenylalanine PET/CT

  • Rouaa Beshr
  • Kayako Isohashi
  • Tadashi Watabe
  • Sadahiro Naka
  • Genki Horitsugi
  • Victor Romanov
  • Hiroki Kato
  • Shin-Ichi Miyatake
  • Eku Shimosegawa
  • Jun Hatazawa
Original Article

Abstract

Objectives

A previous study reported that a differential diagnosis between glioblastoma progression and radiation necrosis by 4-borono-2-[18F]-fluoro-phenylalanine ([18F]FBPA) PET can be made based on lesion-to-normal ratio of [18F]FBPA accumulation. Two-dimensional data acquisition mode PET alone system, with in-plane resolution of 7.9 mm and axial resolution of 13.9 mm, was used. In the current study, we aimed to confirm the differential diagnostic capability of [18F]FBPA PET/CT with higher PET spatial resolution by three-dimensional visual inspection and by measuring mean standardized uptake value (SUVmean), maximum SUV (SUVmax), metabolic tumor volume (MTV), and total lesion (TL) [18F]FBPA uptake.

Methods

Twelve patients of glioma (9), malignant meningioma (1), hemangiopericytoma (1), and metastatic brain tumor (1) were enrolled. All had preceding radiotherapy. High-resolution three-dimensional data acquisition mode PET/CT with in-plane resolution of 4.07 mm and axial resolution of 5.41 mm was employed for imaging. Images were three-dimensionally analyzed using the PMOD software. SUVmean and SUVmax of lesion and normal brain were measured. Lesion MTV and TL FBPA uptake were calculated. The diagnostic accuracy of [18F]FBPA PET/CT in detecting recurrence (n = 6) or necrosis (n = 6) was verified by clinical follow-up.

Results

All parameters showed significantly higher values for tumor recurrence than for necrosis. SUVmean in recurrence was 2.95 ± 0.84 vs 1.18 ± 0.24 in necrosis (P = 0.014); SUVmax in recurrence was 4.63 ± 1.23 vs 1.93 ± 0.44 in necrosis (P = 0.014); MTV in recurrence was 44.92 ± 28.93 mL vs 10.66 ± 8.46 mL in necrosis (P = 0.032); and mean TL FBPA uptake in recurrence was 121.01 ± 50.48 g vs 12.36 ± 9.70 g in necrosis (P = 0.0029).

Conclusion

In this preliminary feasibility study, we confirmed the possibility of differentiating tumor recurrence from radiation necrosis in patients with irradiated brain tumors by [18F]FBPA PET/CT using indices of SUVmean, SUVmax, MTV, and TL 18FBPA uptake.

Keywords

FBPA PET LAT1 Radiation necrosis Recurrence Brain tumor 

Notes

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research (C)(JP15K09954), (C)(24591758), and (S)(24229008) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors thankfully acknowledge the help and support of Mr. Takashi Kamiya chief technologist, Osaka University Hospital.

Supplementary material

12149_2018_1296_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 15 KB)

References

  1. 1.
    Saris S. Multidisciplinary approach to malignant gliomas. Med Health R I. 1996;79(6):210–3.PubMedGoogle Scholar
  2. 2.
    Jeon YS, Young-Cho K, Song SW, Cho J, Lim SD. Palliative resection of metastatic brain tumors previously treated by stereotactic radiosurgery. Brain Tumor Res Treat. 2016;4(2):116–23.CrossRefGoogle Scholar
  3. 3.
    Patchell RA. The management of brain metastases. Cancer Treat Rev. 2013;29(6):533–40.CrossRefGoogle Scholar
  4. 4.
    Plowman PN. Stereotactic radiosurgery. VIII. The classification of postradiation reactions. Br J Neurosurg. 1999;13(3):256–64.CrossRefGoogle Scholar
  5. 5.
    Rane N, Quaghebeur G. CNS effects following the treatment of malignancy. Clin Radiol. 2012;67:61–8.CrossRefGoogle Scholar
  6. 6.
    Verma N, Cowperthwaite MC, Burnett MG, Markey MK. Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro-Oncology. 2013;15:515–34.CrossRefGoogle Scholar
  7. 7.
    Dooms GC, Hecht S, Brant-Zawadzki M, Berthiaume Y, Norman D, Newton TH. Brain radiation lesions: MR imaging. Radiology. 1986;158:149–55.CrossRefGoogle Scholar
  8. 8.
    Parvez K, Parvez A, Zadeh G. The diagnosis and treatment of pseudoprogression, radiation necrosis and brain tumor recurrence. Int J Mol Sci. 2014;15(7):11832–46.CrossRefGoogle Scholar
  9. 9.
    Van Laere K, Ceyssens S, Van Calenbergh F, de Groot T, Menten J, Flamen P, Bormans G, Mortelmans L. Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging. 2015;32(1):39–51.CrossRefGoogle Scholar
  10. 10.
    Minamimoto R, Saginoya T, Kondo C, Tomura N, Ito K, Matsuo Y, Matsunaga S, Shuto T, Akabane A, Miyata Y, Sakai S, Kubota K. Differentiation of brain tumor recurrence from post-radiotherapy necrosis with 11C-methionine PET: visual assessment versus quantitative assessment. PLoS One. 2015;13(7):e0132515. 10).CrossRefGoogle Scholar
  11. 11.
    Okamoto S, Shiga T, Hattori N, Kubo N, Takei T, Katoh N, Sawamura Y, Nishijima K, Kuge Y, Tamaki N. Semiquantitative analysis of C-11 methionine PET may distinguish brain tumor recurrence from radiation necrosis even in small lesions. Ann Nucl Med. 2011;25:213–20.CrossRefGoogle Scholar
  12. 12.
    Iwai Y, Yamanaka K, Oda J, Tsuyuguchi N, Ochi H. Tracer accumulation in radiation necrosis of the brain after thallium-201 SPECT and [11C]methionine PET: case report. Neurol Med Chir (Tokyo). 2001;41(8):415–8.CrossRefGoogle Scholar
  13. 13.
    Lizarraga KJ, Allen-Auerbach M, Czernin J, DeSalles AA, Yong WH, Phelps ME, Chen W. 18F-FDOPA PET for differentiating recurrent or progressive brain metastatic tumors from late or delayed radiation injury after radiation treatment. J Nucl Med. 2014;55:30–6.CrossRefGoogle Scholar
  14. 14.
    Morana G, Piccardo A, Puntoni M, Nozza P, Cama A, Raso A, Mascelli S, Massollo M, Milanaccio C, Garre ML, Rossi A. Diagnostic and prognostic value of 18F-DOPA PET and 1H-MR spectroscopy in pediatric supratentorial infiltrative gliomas: a comparative study. Neuro Oncol. 2015;17(12):1637–47.CrossRefGoogle Scholar
  15. 15.
    Ceccon G, Lohmann Ph, Stoffels G, Judov N, Filss CP, Rapp M, Bauer E, Hamisch C, et al. Dynamic O-(2-18F-fluoroethyl)-l-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro-oncology. 2017;19(2):281–8.PubMedGoogle Scholar
  16. 16.
    Shimosegawa E, Isohashi K, Naka S, Horitsugi G, Hatazawa J. Assessment of 10B concentration in boron neutron capture therapy: potential of image-guided therapy using 18FBPA PET. Ann Nucl Med. 2016;30(10):749–55.CrossRefGoogle Scholar
  17. 17.
    Isohashi K, Shimosegawa K, Naka S, Kanai Y, Horitsugi G, Mochida I, Matsunaga K, Watabe T, Kato H, Tatsumi M, Hatazawa J. Comparison of the image-derived radioactivity and blood-sample radioactivity for estimating the clinical indicators of the efficacy of boron neutron capture therapy (BNCT): 4-borono-2-18F-fluoro-phenylalanine (FBPA) PET study. EJNMMI Res. 2016;6(1):75.CrossRefGoogle Scholar
  18. 18.
    Yoshimoto M, Kurihara H, Honda N, Kawai K, Ohe K, Fujii H, Itami J, Arai Y. Predominant contribution of l-type amino acid transporter to 4-borono-2-(18)F-fluoro-phenylalanine uptake in human glioblastoma cells. Nucl Med Biol. 2013;40(5):625–9.CrossRefGoogle Scholar
  19. 19.
    Watabe T, Ikeda H, Nagamori Sh, Wiriyasermkul P, Tanaka Y, Naka S, Kanai Y, Hagiwara K, Aoki M, Shimosegawa E, Kanai Y, Hatazawa J. 18F-FBPA as a tumor-specific probe of l-type amino acid transporter 1 (LAT1): a comparison study with 18F-FDG and 11C-methionine PET. Eur J Nucl Med Mol Imaging. 2017;44(2):321–31.CrossRefGoogle Scholar
  20. 20.
    Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem. 1998;273(37):23629–32.CrossRefGoogle Scholar
  21. 21.
    Koshi H, Sano T, Handa T, Yanagawa T, Saitou K, Nagamori S, Kanai Y, Takagishi K, Oyama T. l-Type amino acid transporter-1 and CD98 expression in bone and soft tissue tumors. Pathol Int. 2015;65(9):460–7.CrossRefGoogle Scholar
  22. 22.
    Yoshino E, Ohmori Y, Imahori Y, Higuchi T, Furuya S, Naruse S, Mori T, Suzuki K, Yamaki T, Ueda S, Tsuzuki T, Takai S. Irradiation effects on the metabolism of metastatic brain tumors: analysis by positron emission tomography and 1H-magnetic resonance spectroscopy. Stereotact Funct Neurosurg. 1996;66(Suppl 1):240–59.CrossRefGoogle Scholar
  23. 23.
    Miyashita M, Miyatake S, Imahori Y, Yokoyama K, Kawabata S, Kajimoto Y, Shibata MA, Otsuki Y, Kirihata M, Ono K, Kuroiwa T. Evaluation of fluoride-labeled boronophenylalanine-PET imaging for the study of radiation effects in patients with glioblastomas. J Neurooncol. 2008;89(2):239–46.CrossRefGoogle Scholar
  24. 24.
    Kanno I, Miura S, Yamamoto S, Iida H, Murakami M, Takahashi K, Uemura K. Design and evaluation of a positron emission tomograph:HEADTOME III. J Comput Assist Tomogr. 1985;9(5):931–9.CrossRefGoogle Scholar
  25. 25.
    Ishiwata K, Ido T, Mejia AA, Ichihashi M, Mishima Y. Synthesis and radiation dosimetry of 4-borono-2-[18F]fluoro-d,l-phenylalanine: a target compound for PET and boron neutron capture therapy. Int J Rad Appl Instrum A. 1991;42(4):325–8.CrossRefGoogle Scholar
  26. 26.
    Matsumoto K, Kitamura K, Mizuta T, Tanaka K, Yamamoto S, Sakamoto S, et al. Performance characteristics of a new 3-dimensional continuous-emission and spiral-transmission high sensitivity and high-resolution PET camera evaluated with the NEMA NU 2-2001 standard. J Nucl Med. 2006;47(1):83–90.PubMedGoogle Scholar
  27. 27.
    Bishop A, Satyamurthy N, Gerald B, George H, Ph M, Jorge B. Proton irradiation of [18O]O2: production of [18F]F2 and [18F]F2 + [18F]OF2. Nucl Med Biol. 1996;23(3):189–99.CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Nuclear Medicine 2018

Authors and Affiliations

  • Rouaa Beshr
    • 1
    • 2
  • Kayako Isohashi
    • 1
  • Tadashi Watabe
    • 1
  • Sadahiro Naka
    • 1
  • Genki Horitsugi
    • 1
  • Victor Romanov
    • 1
    • 2
  • Hiroki Kato
    • 1
  • Shin-Ichi Miyatake
    • 3
  • Eku Shimosegawa
    • 1
    • 4
  • Jun Hatazawa
    • 1
    • 2
  1. 1.Department of Nuclear Medicine and Tracer KineticsOsaka University Graduate School of MedicineSuitaJapan
  2. 2.Immunology Frontier Research CenterOsaka UniversitySuitaJapan
  3. 3.Department of NeurosurgeryOsaka Medical CollegeTakatsukiJapan
  4. 4.Department of Molecular Imaging in MedicineOsaka University Graduate School of MedicineSuitaJapan

Personalised recommendations