Advertisement

Annals of Nuclear Medicine

, Volume 32, Issue 5, pp 319–327 | Cite as

Diagnostic value of quantitative assessment of cardiac 18F-fluoro-2-deoxyglucose uptake in suspected cardiac sarcoidosis

  • Adrien Lebasnier
  • Damien Legallois
  • Boris Bienvenu
  • Emmanuel Bergot
  • Cédric Desmonts
  • Gérard Zalcman
  • Denis Agostini
  • Alain ManriqueEmail author
Original Article

Abstract

Objective

The identification of cardiac sarcoidosis is challenging as there is no gold standard consensually admitted for its diagnosis. The aim of this study was to evaluate the diagnostic value of the assessment of cardiac dynamic 18F-fluoro-2-deoxyglucose positron emission tomography (18F-FDG PET/CT) and net influx constant (Ki) in patients suspected of cardiac sarcoidosis.

Methods

Data obtained from 30 biopsy-proven sarcoidosis patients suspected of cardiac sarcoidosis who underwent a 50-min list-mode cardiac dynamic 18F-FDG PET/CT after a 24 h high-fat and low-carbohydrate diet were analyzed. A normalized coefficient of variation of quantitative glucose influx constant, calculated as the ratio: standard deviation of the segmental Ki (min−1)/global Ki (min−1) was determined using a validated software (Carimas® 2.4, Turku PET Centre). Cardiac sarcoidosis was diagnosed according to the Japanese Ministry of Health and Welfare criteria. Receiving operating curve analysis was performed to determine sensitivity and specificity of cardiac dynamic 18F-FDG PET/CT analysis to diagnose cardiac sarcoidosis.

Results

Six out of 30 patients (20%) were diagnosed as having cardiac sarcoidosis. Myocardial glucose metabolism was significantly heterogeneous in patients with cardiac sarcoidosis who showed significantly higher normalized coefficient of variation values compared to patients without cardiac sarcoidosis (0.513 ± 0.175 vs. 0.205 ± 0.081; p = 0.0007). Using ROC curve analysis, we found a cut-off value of 0.38 for the diagnosis of cardiac sarcoidosis with a sensitivity of 100% and a specificity of 91%.

Conclusions

Our results suggest that quantitative analysis of cardiac dynamic 18F-FDG PET/CT could be a useful tool for the diagnosis of cardiac sarcoidosis.

Keywords

Cardiac sarcoidosis Positron emission tomography Dynamic acquisition FDG Quantitative analysis 

Abbreviations

ACE

Angiotensin-converting enzyme

CRP

C-reactive protein

CS

Cardiac sarcoidosis

CT

Computed tomography

FFA

Free fatty acids

18F-FDG

8F-fluoro-2-deoxyglucose

18F-FDG PET/CT

Cardiac dynamic 18F-fluoro-2-deoxyglucose positron emission tomography

FWHM

Full width at half maximum

HFLC

High-fat and low-carbohydrate

Ki

Net influx constant

MPI

Myocardial perfusion imaging

NCOV

Normalized coefficient of variation

PET

Positron emission tomography

ROC

Receiving operating curve

ROI

Region of interest

SUV

Standard uptake value

Notes

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  1. 1.
    Valeyre D, Prasse A, Nunes H, Uzunhan Y, Brillet P-Y. Müller-Quernheim J Sarcoidosis Lancet. 2014;383:1155–67.PubMedGoogle Scholar
  2. 2.
    Sekiguchi M, Yazaki Y, Isobe M, Hiroe M. Cardiac sarcoidosis: diagnostic, prognostic, and therapeutic considerations. Cardiovasc Drugs Ther Spons Int Soc Cardiovasc Pharmacother. 1996;10:495–510.CrossRefGoogle Scholar
  3. 3.
    Silverman KJ, Hutchins GM, Bulkley BH. Cardiac sarcoid: a clinicopathologic study of 84 unselected patients with systemic sarcoidosis. Circulation. 1978;58:1204–11.CrossRefPubMedGoogle Scholar
  4. 4.
    Hamzeh NY, Wamboldt FS, Weinberger HD. Management of cardiac sarcoidosis in the United States: a Delphi study. Chest. 2012;141:154 – 62.CrossRefPubMedGoogle Scholar
  5. 5.
    Diagnostic standard and guidelines for sarcoidosis. Jpn J Sarcoidosis Granulomatous Disord. 2007;27:89–102.Google Scholar
  6. 6.
    Soejima K, Yada H. The work-up and management of patients with apparent or subclinical cardiac sarcoidosis: with emphasis on the associated heart rhythm abnormalities. J Cardiovasc Electrophysiol. 2009;20:578 – 83.CrossRefPubMedGoogle Scholar
  7. 7.
    Birnie DH, Sauer WH, Bogun F, Cooper JM, Culver DA, Duvernoy CS, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm. 2014;11:1305–23.CrossRefPubMedGoogle Scholar
  8. 8.
    Brudin LH, Valind SO, Rhodes CG, Pantin CF, Sweatman M, Jones T, et al. Fluorine-18 deoxyglucose uptake in sarcoidosis measured with positron emission tomography. Eur J Nucl Med. 1994;21:297–305.CrossRefPubMedGoogle Scholar
  9. 9.
    Williams G, Kolodny GM. Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. AJR Am J Roentgenol. 2008;190:151–6.CrossRefGoogle Scholar
  10. 10.
    Langah R, Spicer K, Gebregziabher M, Gordon L. Effectiveness of prolonged fasting 18f-FDG PET-CT in the detection of cardiac sarcoidosis. J Nucl Cardiol. 2009;16:801 – 10.CrossRefPubMedGoogle Scholar
  11. 11.
    Tahara N, Tahara A, Nitta Y, Kodama N, Mizoguchi M, Kaida H, et al. Heterogeneous myocardial FDG uptake and the disease activity in cardiac sarcoidosis. JACC Cardiovasc Imaging. 2010;3:1219–28.CrossRefPubMedGoogle Scholar
  12. 12.
    Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3:1–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Fahy GJ, Marwick T, McCreery CJ, Quigley PJ, Maurer BJ. Doppler echocardiographic detection of left ventricular diastolic dysfunction in patients with pulmonary sarcoidosis. Chest. 1996;109:62–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539–542.Google Scholar
  15. 15.
    Sobic-Saranovic D, Artiko V, Obradovic V. FDG PET imaging in sarcoidosis. Semin Nucl Med. 2013;43:404 – 11.CrossRefPubMedGoogle Scholar
  16. 16.
    Ishimaru S, Tsujino I, Takei T, Tsukamoto E, Sakaue S, Kamigaki M, et al. Focal uptake on 18F-fluoro-2-deoxyglucose positron emission tomography images indicates cardiac involvement of sarcoidosis. Eur Heart J. 2005;26:1538–43.CrossRefPubMedGoogle Scholar
  17. 17.
    Smedema J-P, Snoep G, van Kroonenburgh MPG, van Geuns R-J, Dassen WRM, Gorgels APM, et al. Evaluation of the accuracy of gadolinium-enhanced cardiovascular magnetic resonance in the diagnosis of cardiac sarcoidosis. J Am Coll Cardiol. 2005;45:1683–90.CrossRefPubMedGoogle Scholar
  18. 18.
    Soussan M, Brillet P-Y, Nunes H, Pop G, Ouvrier M-J, Naggara N, et al. Clinical value of a high-fat and low-carbohydrate diet before FDG-PET/CT for evaluation of patients with suspected cardiac sarcoidosis. J Nucl Cardiol. 2013;20:120–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Ohira H, Tsujino I, Ishimaru S, Oyama N, Takei T, Tsukamoto E, et al. Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis. Eur J Nucl Med Mol Imaging. 2008;35:933 – 41.CrossRefPubMedGoogle Scholar
  20. 20.
    Okumura W, Iwasaki T, Toyama T, Iso T, Arai M, Oriuchi N, et al. Usefulness of fasting 18F-FDG PET in identification of cardiac sarcoidosis. J Nucl Med. 2004;45:1989–98.PubMedGoogle Scholar
  21. 21.
    Youssef G, Leung E, Mylonas I, Nery P, Williams K, Wisenberg G, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med. 2012;53:241–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Yamagishi H, Shirai N, Takagi M, Yoshiyama M, Akioka K, Takeuchi K, et al. Identification of cardiac sarcoidosis with (13)N-NH(3)/(18)F-FDG PET. J Nucl Med. 2003;44:1030–6.PubMedGoogle Scholar
  23. 23.
    Freedman NMT, Sundaram SK, Kurdziel K, Carrasquillo JA, Whatley M, Carson JM, et al. Comparison of SUV and Patlak slope for monitoring of cancer therapy using serial PET scans. Eur J Nucl Med Mol Imaging. 2003;30:46–53.CrossRefPubMedGoogle Scholar
  24. 24.
    Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med. 1994;35:1308–12.PubMedGoogle Scholar
  25. 25.
    Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-d-glucose: variations with body weight and a method for correction. Radiology. 1993;189:847–50.Google Scholar
  26. 26.
    Bengel FM, Higuchi T, Javadi MS, Lautamäki R. Cardiac positron emission tomography. J Am Coll Cardiol. 2009;54:1–15.CrossRefPubMedGoogle Scholar
  27. 27.
    Patel MR, Cawley PJ, Heitner JF, Klem I, Parker MA, Jaroudi WA, et al. Detection of myocardial damage in patients with sarcoidosis. Circulation. 2009;120:1969–77.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Banba K, Kusano KF, Nakamura K, Morita H, Ogawa A, Ohtsuka F, et al. Relationship between arrhythmogenesis and disease activity in cardiac sarcoidosis. Heart Rhythm. 2007;4:1292–9.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Nuclear Medicine 2018

Authors and Affiliations

  1. 1.Department of Nuclear MedicineCHU de CaenCaenFrance
  2. 2.Normandie Université, UNICAEN, EA4650 Signalisation, Électrophysiologie et Imagerie des Lésions d’Ischémie-Reperfusion MyocardiqueCaenFrance
  3. 3.Department of CardiologyCHU de CaenCaenFrance
  4. 4.Department of Internal MedicineCHU de CaenCaenFrance
  5. 5.Department of Pulmonary MedicineCHU de CaenCaenFrance
  6. 6.Cyceron PET CentreCaenFrance

Personalised recommendations