Skip to main content
Log in

Estimated human absorbed dose for 68Ga-ECC based on mice data: comparison with 67Ga-ECC

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Nowadays, the efficacies of 68Ga-based tracers are comparable to that of 18F-based agents and have stimulated researchers to investigate the potential of 68Ga-based positron emission tomography (PET) imaging agents. In this study, the human absorbed dose of 68Ga labeled with ethylenecysteamine cysteine 68Ga-ECC and 67Ga-ECC was estimated based on biodistribution data in mice by the medical internal radiation dose (MIRD) method.

Methods

For biodistribution of 67Ga/68Ga-ECC, three mice were killed by CO2 asphyxiation at each selected times after injection (15, 30, 45, 60, 120 min for 68Ga-ECC and 0.5, 2 and 48 h for 67Ga-ECC), and then the tissue (heart, lung, brain, intestine, skin, stomach, kidneys, liver, muscle and bone) was removed.

Results

68Ga-ECC as a new PET renal imaging agent was prepared with radiochemical purity of >97 % in less than 30 min. The biodistribution data for 68Ga-ECC showed that the most of the activity extracted from the urinary tract very fast. Comparison between human absorbed dose estimation for these two agents indicated that the absorbed dose of the most organs after injection of 67Ga-ECC is approximately tenfold higher than the amount after 68Ga-ECC injection.

Conclusion

The results showed that 68Ga-ECC is a more appropriate agent rather than 67Ga-ECC and generally can be a good candidate for PET renal imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Roesch F, Riss JP. The renaissance of the 68Ge/68Ga radionuclide generator initiates new developments in 68Ga radiopharmaceutical chemistry. Curr Top Med Chem. 2010;10:1633–68.

    Article  CAS  PubMed  Google Scholar 

  2. Firestone RB, Shirley VS. Table of Isotopes, 2 Volume Set. In: Firestone RB, Shirley VS, editor. pp 3168 ISBN 0-471-33056-6 Wiley; 1998. p. 1.

  3. Breeman WA, Verbruggen AM. The 68 Ge/68 Ga generator has high potential, but when can we use 68Ga-labelled tracers in clinical routine? Eur J Nucl Med Mol Imaging. 2007;34:978–81.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Pagou M, Zerizer I, Al-Nahhas A. Can gallium-68 compounds partly replace 18F-FDG in PET molecular imaging. Hell J Nucl Med. 2009;12:102–5.

    PubMed  Google Scholar 

  5. Fellner M, Baum RP, Kubíček V, Hermann P, Lukeš I, Prasad V, et al. PET/CT imaging of osteoblastic bone metastases with 68Ga-bisphosphonates: first human study. Eur J Nucl Med Mol Imaging. 2010;37:834.

    Article  PubMed  Google Scholar 

  6. Kratochwil C, Giesel FL, López-Benítez R, Schimpfky N, Kunze K, Eisenhut M, et al. Intraindividual comparison of selective arterial versus venous 68Ga-DOTATOC PET/CT in patients with gastroenteropancreatic neuroendocrine tumors. Clin Cancer Res. 2010;16:2899–905.

    Article  CAS  PubMed  Google Scholar 

  7. Yang D, Kim EE, Inoue T. Targeted molecular imaging in oncology. Ann Nucl Med. 2006;20:1–11.

    Article  CAS  PubMed  Google Scholar 

  8. Vanbilloen HP, Cleynhens BJ, Verbruggen AM. Synthesis and biological evaluation of the four isomers of technetium-99m labeled ethylenecysteamine cysteine (99mTc-ECC), the mono-acid derivative of 99mTc-L, L ethylenedicysteine. Nucl Med Biol. 2000;27:207–14.

    Article  CAS  PubMed  Google Scholar 

  9. Jalilian AR, Yousefnia H, Zolghadri S, Khoshdel MR, Bolourinovin F, Rahiminejad A. Development of radiogallium–ethylenecysteamine cysteine complex as a possible renal imaging agent. J Radioanal Nucl Chem. 2010;284:49–54.

    Article  CAS  Google Scholar 

  10. Shanehsazzadeh S, Yousefnia H, Lahooti A, Zolghadri S, Jalilian AR, Afarideh H. Assessment of human effective absorbed dose of 67Ga–ECC based on biodistribution rat data. Ann Nucl Med. 2015;29:118–24.

    Article  CAS  PubMed  Google Scholar 

  11. Stabin M, Tagesson M, Thomas S, Ljungberg M, Strand SE. Radiation dosimetry in nuclear medicine. Appl Radiat Isotopes. 1999;50:73–87.

    Article  CAS  Google Scholar 

  12. Stabin MG. MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 1996;37:538–46.

    CAS  PubMed  Google Scholar 

  13. Loevinger R, Budinger TF, Watson EE. MIRD primer for absorbed dose calculations: society of nuclear medicine New York. 1988.

  14. Sparks RB, Aydogan B. Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose. Sixth international radiopharmaceutical dosimetry symposium Oak Ridge. Oak Ridge Associated Universities; 1996. p. 705–716.

  15. Stabin MG. The importance of patient-specific dose calculations in nuclear medicine. Nucl Eng Technol. 2008;40:527–32.

    Article  Google Scholar 

  16. Lahooti A, Shanehsazzadeh S, Jalilian AR, Tavakoli MB. Assessment of effective absorbed dose of 111In-DTPA-Buserelin in human on the basis of biodistribution rat data. Radiat Prot Dosim. 2013;154:1–8.

    Article  CAS  Google Scholar 

  17. Lahooti A, Shanehsazzadeh S, Oghabian MA, Allen BJ. Assessment of human effective absorbed dose of Tc-99m-USPIO based on biodistribution rat data. J Labelled Compd Radiopharm. NJ: Wiley; 2013.

  18. Sadeghzadeh M, Shanehsazzadeh S, Lahooti A. Assessment of the effective absorbed dose of 4-benzyl-1-(3-[125I]-iodobenzylsulfonyl) piperidine in humans on the basis of biodistribution data of rats. Nucl Med Commun. 2015;36:90–4.

    Article  CAS  PubMed  Google Scholar 

  19. Moghaddam AK, Jalilian AR, Hayati V, Shanehsazzadeh S. Determination of human absorbed dose of 201Tl (III)-DTPA-HIgG based on biodistribution data in rats. Radiat Prot Dosim. 2010;141:269–74.

    Article  Google Scholar 

  20. Shanehsazzadeh S, Jalilian A. Development of [67Ga]-DTPA-gonadorelin in normal rats. J Labelled Compd Radiopharm. 2009;52:326.

    Google Scholar 

  21. Shanehsazzadeh S, Oghabian MA, Lahooti A, Allen BJ. Development of ultra small super paramagnetic iron oxide nanoparticles labeled with Gallium-67 as a dual modality probe. J Labelled Compd Radiopharm. NJ: Wiley; 2013.

  22. Shanehsazzadeh S, Oghabian MA, Lahooti A, Abdollahi M, Haeri SA, Amanlou M, et al. Estimated background doses of [67Ga]-DTPA-USPIO in normal Balb/c mice as a potential therapeutic agent for liver and spleen cancers. Nucl Med Commun. 2013;34:915–25.

    PubMed  Google Scholar 

  23. Shanehsazzadeh S, Lahooti A, Sadeghi HR, Jalilian AR. Estimation of human effective absorbed dose of 67Ga–cDTPA–gonadorelin based on biodistribution rat data. Nucl Med Commun. 2011;32:37–43.

    Article  CAS  PubMed  Google Scholar 

  24. Moghaddam AK, Jalilian AR, Hayati V, Shanehsazzadeh S, Dodangeh A, editors. Evaluation and calculation of human absorbed dose of 201Tl(III)-DTPA-HIgG based on biodistribution data in rats. J Labelled Compd Radiopharm. MA: Wiley; 2011.

  25. Council B. Guidelines on the use of living animals in scientific investigations: Biological Council; 1987.

  26. Lahooti A, Shanehsazzadeh S, Jalilian AR, Tavakoli MB. Assessment of effective absorbed dose of 111In-DTPA-Buserelin in human on the basis of biodistribution rat data. Radiat Prot Dosim. 2013;154:1–8.

    Article  CAS  Google Scholar 

  27. Shanehsazzadeh S, Lahooti A. Biodistribution of 80 nm iron oxide nanoparticles labeled with 99mTc in Balb/c mice. Nucl Med Biol. 2014;41:625.

    Article  Google Scholar 

  28. Jalilian A, Shanehsazzadeh S, Akhlaghi M, Garoosi J, Rajabifar S, Tavakoli M. Preparation and evaluation of [67Ga]-DTPA-β-1–24-corticotrophin in normal rats. Radiochim Acta. 2008;96:435–9.

    CAS  Google Scholar 

  29. Jalilian AR, Shanesazzadeh S, Rowshanfarzad P, Bolourinovin F, Majdabadi A. Biodistribution study of [61Cu] pyruvaldehyde-bis (N-4-methylthiosemicarbazone) in normal rats as a PET tracer. Nucl Sci Tech. 2008;19:159–64.

    Article  CAS  Google Scholar 

  30. Jalilian AR, Sardari D, Kia L, Rowshanfarzad P, Garousi J, Akhlaghi M, et al. Preparation, quality control and biodistribution studies of two [111In]-rituximab immunoconjugates. Sci Pharm. 2008;76:151–70.

    Article  CAS  Google Scholar 

  31. Jalilian AR, Shanehsazzadeh S, Akhlaghi M, Kamali-dehghan M, Moradkhani S. Development of [111In]-DTPA-buserelin for GnRH receptor studies. Radiochim Acta. 2010;98:113–9.

    CAS  Google Scholar 

  32. Jalilian AR, Shanehsazzadeh S, Akhlaghi M, Garousi J, Rajabifar S, Tavakoli MB. Preparation and biodistribution of [67Ga]-DTPA-gonadorelin in normal rats. J Radioanal Nucl Chem. 2008;278:123–9.

    Article  CAS  Google Scholar 

  33. Shanehsazzadeh S, Jalilian AR, Sadeghi HR, Allahverdi M. Determination of human absorbed dose of 67GA-DTPA-ACTH based on distribution data in rats. Radiat Prot Dosim. 2009;134:79–86.

    Article  CAS  Google Scholar 

  34. Shanehsazzadeh S, Gruettner C, Lahooti A, Mahmoudi M, Allen BJ, Ghavami M, et al. Monoclonal antibody conjugated magnetic nanoparticles could target MUC-1-positive cells in vitro but not in vivo. Contrast Media Mol Imaging. 2014;. doi:10.1002/cmmi.1627.

    PubMed  Google Scholar 

  35. Bevelacqua J. Internal dosimetry primer. Radiat Prot Manage. 2005;22:7–17.

    Google Scholar 

  36. Snyder W, Ford M, Warner G, Watson S. Absorbed dose per unit cumulated activity for selected radionuclides and organs. MIRD Pamphlet No. 11. New York: Society of Nuclear Medicine; 1975.

  37. ICRP. Radiation dose to patients from radiopharmaceuticals. Addendum 3 to ICRP Publication 53. ICRP Publication 106. Approved by the Commission in October 2007. Ann ICRP. 2008;38((1–2)):1–197.

    CAS  PubMed  Google Scholar 

  38. Boutaleb S, Pouget JP, Hindorf C, Pelegrin A, Barbet J, Kotzki PO, et al. Impact of mouse model on preclinical dosimetry in targeted radionuclide therapy. Proc IEEE. 2009;97:2076–85.

    Article  Google Scholar 

  39. de Jong M, Breeman WA, Bernard BF, Bakker WH, Schaar M, van Gameren A, et al. [177Lu-DOTA0, Tyr3] octreotate for somatostatin receptor-targeted radionuclide therapy. Int J Cancer. 2001;92:628–33.

    Article  PubMed  Google Scholar 

  40. Lewis JS, Wang M, Laforest R, Wang F, Erion JL, Bugaj JE, et al. Toxicity and dosimetry of 177Lu-DOTA-Y3-octreotate in a rat model. Int J Cancer. 2001;94:873–7.

    Article  CAS  PubMed  Google Scholar 

  41. Wild D, Wicki A, Mansi R, Behe M, Keil B, Bernhardt P, et al. Exendin-4-based radiopharmaceuticals for glucagonlike peptide-1 receptor PET/CT and SPECT/CT. J Nucl Med. 2010;51:1059–67.

    Article  CAS  PubMed  Google Scholar 

  42. Docenko D, Sunyaev R. Fine-structure infrared lines from the Cassiopeia A knots. arXiv preprint arXiv:08061801. 2008.

  43. Docenko D. Spectroscopy of high-Z ions as a way to understanding the nature of Cas A knots and intergalactic shocks. 2008.

  44. Shanehsazzadeh S, Lahooti A, Shirmardi SP, Erfani M. Comparison of estimated human effective dose of 67Ga- and 99mTc-labeled bombesin based on distribution data in mice. J Radioanal Nucl Chem. 2015. doi:10.1007/s10967-015-3995-7.

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Nuclear Science & Technology Research Institute (NSTRI) for the financial support.

Conflict of interest

The authors declare that they have no conflict.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Yousefnia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanehsazzadeh, S., Yousefnia, H., Jalilian, A.R. et al. Estimated human absorbed dose for 68Ga-ECC based on mice data: comparison with 67Ga-ECC. Ann Nucl Med 29, 475–481 (2015). https://doi.org/10.1007/s12149-015-0967-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-015-0967-5

Keywords

Navigation