Advertisement

Annals of Nuclear Medicine

, Volume 29, Issue 3, pp 268–275 | Cite as

Monitoring of positron using high-energy gamma camera for proton therapy

  • Seiichi Yamamoto
  • Toshiyuki Toshito
  • Masataka Komori
  • Yuki Morishita
  • Satoshi Okumura
  • Mitsutaka Yamaguchi
  • Yuichi Saito
  • Naoki Kawachi
  • Shu Fujimaki
Original Article

Abstract

Purpose

In proton therapy, imaging of proton-induced positrons is a useful method to monitor the proton beam distribution after therapy. Usually, a positron emission tomography (PET) system installed in or near the proton beam treatment room is used for this purpose. However, a PET system is sometimes too large and expensive for this purpose. We developed a small field-of-view (FOV) gamma camera for high-energy gamma photons and used it for monitoring the proton-induced positron distribution.

Methods

The gamma camera used 0.85 mm × 0.85 mm × 10 mm Ce:Gd3Al2Ga3O12 (GAGG) pixels arranged in 20 × 20 matrix to form a scintillator block, which was optically coupled to a 1-inch-square position-sensitive photomultiplier tube (PSPMT). The GAGG detector was encased in a 20-mm thick container and a pinhole collimator was mounted on its front. The gamma camera was set 1.2 m from the 35 cm × 35 cm × 5 cm plastic phantom in the proton therapy treatment room, and proton beams were irradiated to the phantom with two proton energies.

Results

The gamma camera had spatial resolution of ~6.7 cm and sensitivity of 3.2 × 10−7 at 1 m from the collimator surface. For both proton energies, positron distribution in the phantom could be imaged by the gamma camera with 10-min acquisition. The lengths of the range of protons measured from the images were almost identical to the simulation results.

Conclusions

These results indicate that the developed high-energy gamma camera is useful for imaging positron distributions in proton therapy.

Keywords

Proton therapy Positron Gamma camera Imaging 

Notes

Acknowledgments

Measurements of proton beam in this work were performed at the Nagoya Proton Therapy Center. We would also like to thank the clinical team for allowing beam time for our experiments, and thank all of the staff who helped us prepare and carry out the irradiations.

References

  1. 1.
    Bennett GW, Archambeau JO, Archambeau BE, Meltzer JI, Wingate CL. Visualization and transport of positron emission from proton activation in vivo. Science. 1978;200:1151–3.CrossRefPubMedGoogle Scholar
  2. 2.
    Del Guerra A, Di Domenico G, Gambaccini M, Marziani M. A Monte Carlo simulation of the possible use of positron emission tomography in proton radiotherapy. Nucl Instr Methods A. 1994;345:379–84.CrossRefGoogle Scholar
  3. 3.
    Oelfke U, Lam GKY, Atkins MS. Proton dose monitoring with PET: quantitative studies in Lucite. Phys Med Biol. 1996;41:177–96.CrossRefPubMedGoogle Scholar
  4. 4.
    Hishikawa Y, Kagawa K, Murakami M, Sakai H, Akagi T, Abe M. Usefulness of positron-emission tomographic images after proton therapy. Int J Radiat Oncol Biol Phys. 2002;53:1388–91.CrossRefPubMedGoogle Scholar
  5. 5.
    Parodi K, Paganetti H, Shih EA, Michaud S, Loeffler JS, Delaney TF, et al. Patient study on in vivo verification of beam delivery and range using PET/CT imaging after proton therapy. Int J Radiat Oncol Biol Phys. 2007;68:920–34.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Experimental results with proton beams, Litzenberg DW, Roberts DA, Lee MY, Pham K, Vander Molen AM, Ronninge R, et al. On-line monitoring of radiotherapy beams. Med Phys. 1999;26:992–1006.CrossRefGoogle Scholar
  7. 7.
    Parodi K, Enghardt W, Haberer T. In-beam PET measurements of radioactivity induced by proton beams. Phys Med Biol. 2002;47:21–36.CrossRefPubMedGoogle Scholar
  8. 8.
    Inaniwa T, Tomitani T, Kohno T, Kanai T. Quantitative comparison of suitability of various beams for range monitoring with induced activity in hadron therapy. Phys Med Biol. 2005;50:1131–45.CrossRefPubMedGoogle Scholar
  9. 9.
    Iseki Y, Mizuno H, Futami Y, Tomitani T, Kanai T, Kanazawa M, et al. Positron camera for range verification of heavy-ion radiotherapy. Nucl Instrum Methods-A. 2003;515:840–9.CrossRefGoogle Scholar
  10. 10.
    Nishio T, Ogino T, Nomura K, Uchida H. Dose-volume delivery guided proton therapy using beam on-line PET system. Med Phys. 2006;33(11):4190–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Yamaya T, Yoshida E, Inaniwa T, Sato S, Nakajima Y, Wakizaka H, et al. Development of a small prototype for a proof-of-concept of open PET imaging. Phys Med Biol. 2011;56:1123–37.CrossRefPubMedGoogle Scholar
  12. 12.
    Tashima H, Yamaya T, Yoshida E, Kinouchi S, Watanabe M, Tanaka E. A single-ring open PET enabling PET imaging during radiotherapy. Phys Med Biol. 2012;57(14):4705–18.CrossRefPubMedGoogle Scholar
  13. 13.
    Smeets J, Roellinghoff F, Prieels D, Stichelbaut F, Benilov A, Busca P, et al. Prompt gamma imaging with a slit camera for real-time range control in proton therapy. Phys Med Biol. 2012;57(11):3371–405.CrossRefPubMedGoogle Scholar
  14. 14.
    Perali I, Celani A, Bombelli L, Fiorini C, Camera F, Clementel E, et al. Prompt gamma imaging of proton pencil beams at clinical dose rate. Phys Med Biol. 2014;59(19):5849–71.CrossRefPubMedGoogle Scholar
  15. 15.
    Kamada K, Yanagida T, Endo T, Tsutsumi K, Usuki Y, Nikl M, et al. 2 inch diameter single crystal growth and scintillation properties of Ce:Gd3Al2Ga3O12. J Cryst Growth. 2012;352:88–90.CrossRefGoogle Scholar
  16. 16.
    Yamamoto S, Watabe H, Kato K, Hatazawa J. Performance comparison of high quantum efficiency and normal quantum efficiency photomultiplier tubes and position sensitive photomultiplier tubes for high resolution PET and SPECT detectors. Med Phys. 2012;39(11):6667–960.Google Scholar
  17. 17.
    Sato T, Niita K, Matsuda N, Hashimoto S, Iwamoto Y, Noda S, et al. Particle and heavy ion transport code system PHITS, Version 2.52. J Nucl Sci Technol. 2013;50(9):913–23.CrossRefGoogle Scholar
  18. 18.
    Jakoby BW, Bercier Y, Conti M, Casey ME, Bendriem B, Townsend DW. Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol. 2011;56(8):2375–89.CrossRefPubMedGoogle Scholar
  19. 19.
    Bettinardi V, Presotto L, Rapisarda E, Picchio M, Gianolli L, Gilardi MC. Physical performance of the new hybrid PET/CT discovery-690. Med Phys. 2011;38(10):5394–411.CrossRefPubMedGoogle Scholar
  20. 20.
    Bettinardi V, Danna M, Savi A, Lecchi M, Castiglioni I, Gilardi MC, et al. Performance evaluation of the new whole-body PET/CT scanner: discovery ST. Eur J Nucl Med Mol Imaging. 2004;31(6):867–81.CrossRefPubMedGoogle Scholar
  21. 21.
    Moyer RA. A low-energy multihole converging collimator compared with a pinhole collimator. J Nucl Med. 1974;15:59–64.PubMedGoogle Scholar

Copyright information

© The Japanese Society of Nuclear Medicine 2014

Authors and Affiliations

  • Seiichi Yamamoto
    • 1
  • Toshiyuki Toshito
    • 2
  • Masataka Komori
    • 1
  • Yuki Morishita
    • 1
  • Satoshi Okumura
    • 1
  • Mitsutaka Yamaguchi
    • 3
  • Yuichi Saito
    • 3
  • Naoki Kawachi
    • 4
  • Shu Fujimaki
    • 4
  1. 1.Department of Radiological and Medical Laboratory SciencesNagoya University Graduate School of MedicineNagoyaJapan
  2. 2.Department of Proton Therapy Physics, Nagoya Proton Therapy CenterNagoya City West Medical CenterNagoyaJapan
  3. 3.Takasaki Advanced Radiation Research InstituteJapan Atomic Energy Agency (JAEA)TakasakiJapan
  4. 4.Quantum Beam Science CenterJapan Atomic Energy Agency (JAEA)TakasakiJapan

Personalised recommendations