Annals of Nuclear Medicine

, Volume 28, Issue 7, pp 632–637 | Cite as

The usefulness of gated blood pool scintigraphy for right ventricular function evaluation in pulmonary embolism patients

  • Konstantin V. Zavadovsky
  • Nikolay G. Krivonogov
  • Yuri B. Lishmanov
Original Article



According to the international registry ICOPER, right ventricular (RV) dysfunction is the most significant predictor of mortality in patients with pulmonary embolism (PE).


To identify the most informative indicators of gated blood pool single photon emission computer tomography (GBP-SPECT) for evaluation of RV function in patients with PE.


A total of 52 patients were included in the study. The main group (n = 37) comprised patients with PE, and the comparison group (n = 15) patients suffering from coronary heart disease (NYHA class I-II). All patients received GBP-SPECT, and assessment of plasma levels of endothelin-1, stable nitric oxide (NO) metabolites, and 6-keto-PG F1α.


In patients with PE, RV end-systolic volume, stroke volume, ejection fraction, peak ejection rate, peak filling rate, and mean filling rate were significantly lower in comparison with patients without PE. In patients with PE, the levels of endothelin-1, 6-keto-PG F1α, and stable NO metabolites were increased in comparison with patients without PE.


GBP-SPECT facilitates verification of RV dysfunction in patients without massive PE or severe pulmonary hypertension. Dissociation between the volume of PE and degree of RV dysfunction may be caused by an unbalance between humoral vasoactive factors.


Right ventricular dysfunction Gated blood pool SPECT Pulmonary embolism 



This work was supported by the Russian Science Foundation.


  1. 1.
    Goldhaber SZ, Visani L, De Rosa M. Acute pulmonary embolism: clinical outcomes in the international cooperative pulmonary embolism registry (ICOPER). Lancet. 1999;353:1386–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galiè N, Pruszczyk P, et al. ESC committee for practice guidelines (CPG). Guidelines on the diagnosis and management of acute pulmonary embolism: the task force for the diagnosis and management of acute pulmonary embolism of the European society of cardiology (ESC). Eur Heart J. 2008;29(18):2276–315.PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson FA Jr, Spencer FA. Risk factors for venous thromboembolism. Circulation. 2003;107:9–16.CrossRefGoogle Scholar
  4. 4.
    Torbicki A, van Beek EJR, Charbonnier B, Meyer G, Morpurgo M, Palla A, et al. Guidelines on diagnosis and management of acute pulmonary embolism. Task force on pulmonary embolism, European society of cardiology. Eur Heart J. 2000;21:1301–36.CrossRefGoogle Scholar
  5. 5.
    van der Meer RW, Pattynama PM, van Strijen MJ, van den Berg-Huijsmans AA, Hartmann IJ, Putter H, et al. Right ventricular dysfunction and pulmonary obstruction index at helical CT: prediction of clinical outcome during 3-month follow-up in patients with acute pulmonary embolism. Radiology. 2005;235(3):798–803.PubMedCrossRefGoogle Scholar
  6. 6.
    Ersoy H, Goldhaber SZ, Cai T, Luu T, Rosebrook J, Mulkern R, et al. Time-resolved MR angiography: a primary screening examination of patients with suspected pulmonary embolism and contraindications to administration of iodinated contrast material. AJR. 2007;188(5):1246–54.PubMedCrossRefGoogle Scholar
  7. 7.
    Groth M, Henes FO, Müllerleile K, Adam G, Begemann PG, Regier M. Correlation of right ventricular dysfunction parameters and pulmonary vascular obstruction score in acute pulmonary embolism in a porcine model. Emerg Radiol. 2010;17(5):367–74.PubMedCrossRefGoogle Scholar
  8. 8.
    Clements IP, Mullan BP, O’Connor MK, Breen JF, McGregor CG. Assessment of pulmonary thromboendarterectomy by tomographic electrocardiogram-gated equilibrium radionuclide angiocardiography compared with electron beam computed tomography. J Nucl Cardiol. 2007;14(1):92–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Hacker M, Hoyer X, Kupzyk S, La Fougere C, Kois J, Stempfle HU, et al. Clinical validation of the gated blood pool SPECT QBS processing software in congestive heart failure patients: correlation with MUGA, first-pass RNV and 2D-echocardiography. Int J Cardiovasc Imag. 2006;22(3–4):407–16.CrossRefGoogle Scholar
  10. 10.
    Nagaya N, Nishikimi T, Okano Y, Uematsu M, Satoh T, Kyotani S, et al. Plasma brain natriuretic peptide levels increase in proportion to the extent of right ventricular dysfunction in pulmonary hypertension. J Am Coll Cardiol. 1998;31(1):202–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Klok FA, Mos IC, Huisman MV. Brain-type natriuretic peptide levels in the prediction of adverse outcome in patients with pulmonary embolism: a systematic review and meta-analysis. Am J Respir Crit Care Med. 2008;178:425–30.PubMedGoogle Scholar
  12. 12.
    Becattini C, Vedovati MC, Agnelli G. Prognostic value of troponins in acute pulmonary embolism: a meta-analysis//circulation. 2007;116:427–33.Google Scholar
  13. 13.
    Bresser P, Fedullo PF, Auger WR, Channick RN, Robbins IM, Kerr KM, et al. Continuous intravenous epoprostenol for chronic thromboembolic pulmonary hypertension. Eur Respir J. 2004;23(4):595–600.PubMedCrossRefGoogle Scholar
  14. 14.
    Said SI. Mediators and modulators of pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2006;291(4):L547–58.PubMedGoogle Scholar
  15. 15.
    Stratmann G, Gregory GA. Neurogenic and humoral vasoconstriction in acute pulmonary thromboembolism. Anesth Analg. 2003;97(2):341–54.PubMedCrossRefGoogle Scholar
  16. 16.
    Lee J, Chun Y, Lee I, Tuder RM, Hong S, Shim TS, et al. Pathogenic role of endothelin 1 in hemodynamic dysfunction in experimental acute pulmonary thromboembolism. Am J Respir Crit Care Med. 2001;164:1282–7.PubMedGoogle Scholar
  17. 17.
    Gutte H. Neuroendocrine activation and diagnostics in pulmonary embolism: translational studies. Dan Med Bull. 2011;58(3):B4258.PubMedGoogle Scholar
  18. 18.
    de Wet C, Moss J. Metabolic functions of the lung. Anesthesiol Clin North Am. 1998;16:181–99.CrossRefGoogle Scholar
  19. 19.
    Pollock JS, Forstermann U, Mitchell JA, Warner TD, Schmidt HH, Nakane M, et al. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci USA. 1991;88:10480–4.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Ignarro LJ, Cirino G, Casini A, Napoli C. Nitric oxide as a signaling molecule in the vascular system: an overview. J Cardiovasc Pharmacol. 1999;34(6):879–86.PubMedCrossRefGoogle Scholar
  21. 21.
    Gutte H, Oxbol J, Kristoffersen US, Mortensen J, Kjaer A. Gene expression of ANP, BNP and ET-1 in the heart of rats during pulmonary embolism. PLoS One. 2010;5(6):1–6.CrossRefGoogle Scholar
  22. 22.
    Kjaer A, Hesse B. Heart failure and neuroendocrine activation: diagnostic, prognostic and therapeutic perspectives. Clin Phys Funct Imag. 2001;21:661–72.Google Scholar
  23. 23.
    Berger RM, Geiger R, Hess J, Bogers AJ, Mooi WJ. Altered arterial expression patterns of inducible and endothelial nitric oxide synthase in pulmonary plexogenic arteriopathy caused by congenital heart disease. Am J Respir Crit Care Med. 2001;163(6):1493–9.PubMedGoogle Scholar
  24. 24.
    Fagan KA, Morrissey B, Fouty BW, Sato K, Harral JW, Morris KG Jr, et al. Upregulation of nitric oxide synthase in mice with severe hypoxia-induced pulmonary hypertension. Respir Res. 2001;2(5):306–13.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Nuclear Medicine 2014

Authors and Affiliations

  • Konstantin V. Zavadovsky
    • 1
  • Nikolay G. Krivonogov
    • 1
  • Yuri B. Lishmanov
    • 1
    • 2
  1. 1.Nuclear Medicine DepartmentFederal State Budgetary Institution “Research Institute for Cardiology” of Siberian Branch under the Russian Academy of Medical ScienceTomskRussia
  2. 2.National Research Tomsk Polytechnic University, Russian FederationTomskRussia

Personalised recommendations