Annals of Nuclear Medicine

, Volume 27, Issue 10, pp 916–923 | Cite as

Clinical outcome prediction of percutaneous cementoplasty for metastatic bone tumor using 18F-FDG PET-CT

  • Yong-il Kim
  • Hyun Guy KangEmail author
  • Seok-ki Kim
  • June Hyuk Kim
  • Han Soo Kim
Original Article



Percutaneous cementoplasty (PC) is used for metastatic bone tumor. Bone metastases patients who are unable to avail regular surgery, because of their poor general condition, undergo PC to gain mechanical stability and pain relief. We evaluated the effect of PC using 18F-FDG PET-CT and investigated the correlation and predictability between quantitative parameters of 18F-FDG PET-CT and pain status after PC.


Subjects comprised 18 patients (total 32 sites) who had undergone PC for the metastatic bone tumors. Pain degree of the patients was obtained by visual analog scale (VAS) in the pre-PC, immediate post-PC, and follow-up post-PC state. As PET-CT parameters, maximum and mean standardized uptake value (MaxSUV and MeanSUV), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were measured. Receiver operator characteristic curve analysis was performed for pre-PC, post-PC PET-CT, and delta (Δ) values of PET-CT parameters to correlate and predict the good pain improvement (VAS pain ≤2) after the PC procedure.


Patients’ pain status improved significantly in immediate post-PC and follow-up post-PC pain (all p < 0.001). Among PET-CT parameters, MaxSUV (p = 0.004) and MeanSUV (p = 0.007) showed significant interval decrease after PC procedure. All of the post-PC PET-CT and ΔPET-CT values showed significant prediction of pain improvement for follow-up post-PC pain, especially ΔTLG (AUC = 0.804, p = 0.0003) and ΔMTV (AUC = 0.804, p = 0.0004).


There was significant reduction of patients’ pain after PC, and ΔTLG and ΔMTV of PET-CT parameters showed best predictability for follow-up post-PC pain improvement. PET-CT can be the useful parameter to predict treatment response of PC.


Positron emission tomography Percutaneous cementoplasty Bone metastasis Visual analog scale Standardized uptake value Total lesion glycolysis 


Conflict of interest

The authors have no potential conflict of interest.

Supplementary material

12149_2013_771_MOESM1_ESM.doc (36 kb)
Supplementary material 1 (DOC 35 kb)


  1. 1.
    Mercadante S, Fulfaro F. Management of painful bone metastases. Curr Opin Oncol. 2007;19:308–14.PubMedCrossRefGoogle Scholar
  2. 2.
    Cappuccio M, Bandiera S, Babbi L, Boriani L, Corghi A, Amendola L, et al. Management of bone metastases. Eur Rev Med Pharmacol Sci. 2010;14:407–14.PubMedGoogle Scholar
  3. 3.
    Hartsell WF, Scott CB, Bruner DW, Scarantino CW, Ivker RA, Roach M 3rd, et al. Randomized trial of short- versus long-course radiotherapy for palliation of painful bone metastases. J Natl Cancer Inst. 2005;97:798–804.PubMedCrossRefGoogle Scholar
  4. 4.
    Sande TA, Ruenes R, Lund JA, Bruland OS, Hornslien K, Bremnes R, et al. Long-term follow-up of cancer patients receiving radiotherapy for bone metastases: results from a randomised multicentre trial. Radiother Oncol. 2009;91:261–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Oh D, Huh SJ, Nam H, Park W, Han Y, Lim do H, et al. Pelvic insufficiency fracture after pelvic radiotherapy for cervical cancer: analysis of risk factors. Int J Radiat Oncol Biol Phys. 2008;70:1183–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Herman MP, Kopetz S, Bhosale PR, Eng C, Skibber JM, Rodriguez-Bigas MA, et al. Sacral insufficiency fractures after preoperative chemoradiation for rectal cancer: incidence, risk factors, and clinical course. Int J Radiat Oncol Biol Phys. 2009;74:818–23.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Nakada K, Kasai K, Watanabe Y, Katoh C, Kanegae K, Tsukamoto E, et al. Treatment of radioiodine-negative bone metastasis from papillary thyroid carcinoma with percutaneous ethanol injection therapy. Ann Nucl Med. 1996;10:441–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Callstrom MR, Charboneau JW, Goetz MP, Rubin J, Atwell TD, Farrell MA, et al. Image-guided ablation of painful metastatic bone tumors: a new and effective approach to a difficult problem. Skelet Radiol. 2006;35:1–15.CrossRefGoogle Scholar
  9. 9.
    Klekamp J, Samii H. Surgical results for spinal metastases. Acta Neurochir (Wien). 1998;140:957–67.CrossRefGoogle Scholar
  10. 10.
    Kodama H, Aikata H, Uka K, Takaki S, Mori N, Waki K, et al. Efficacy of percutaneous cementoplasty for bone metastasis from hepatocellular carcinoma. Oncology. 2008;72:285–92.CrossRefGoogle Scholar
  11. 11.
    Harris K, Pugash R, David E, Yee A, Sinclair E, Myers J, et al. Percutaneous cementoplasty of lytic metastasis in left acetabulum. Curr Oncol. 2007;14:4–8.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Yamada K, Matsumoto Y, Kita M, Yamamoto K, Kohda W, Kobayashi T, et al. Clinical outcome of percutaneous osteoplasty for pain caused by metastatic bone tumors in the pelvis and femur. J Anesth. 2007;21:277–81.PubMedCrossRefGoogle Scholar
  13. 13.
    Kang HG, Roh YW, Kim HS. The treatment of metastasis to the femoral neck using percutaneous hollow perforated screws with cement augmentation. J Bone Jt Surg Br. 2009;91:1078–82.CrossRefGoogle Scholar
  14. 14.
    Kruger S, Buck AK, Mottaghy FM, Hasenkamp E, Pauls S, Schumann C, et al. Detection of bone metastases in patients with lung cancer: 99mTc-MDP planar bone scintigraphy, 18F-fluoride PET or 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2009;36:1807–12.PubMedCrossRefGoogle Scholar
  15. 15.
    Chan SC, Wang HM, Ng SH, Hsu CL, Lin YJ, Lin CY, et al. Utility of 18F-fluoride PET/CT and 18F-FDG PET/CT in the detection of bony metastases in heightened-risk head and neck cancer patients. J Nucl Med. 2012;53:1730–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Lucignani G. SUV and segmentation: pressing challenges in tumour assessment and treatment. Eur J Nucl Med Mol Imaging. 2009;36:715–20.PubMedCrossRefGoogle Scholar
  17. 17.
    Kim JH, Kang HG, Kim JR, Lin PP, Kim HS. Minimally invasive surgery of humeral metastasis using flexible nails and cement in high-risk patients with advanced cancer. Surg Oncol. 2011;20:e32–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Iannessi A, Amoretti N, Marcy PY, Sedat J. Percutaneous cementoplasty for the treatment of extraspinal painful bone lesion, a prospective study. Diagn Interv Imaging. 2012;93:859–70.PubMedCrossRefGoogle Scholar
  19. 19.
    Deschamps F, Farouil G, Hakime A, Teriitehau C, Barah A, de Baere T. Percutaneous stabilization of impending pathological fracture of the proximal femur. Cardiovasc Intervent Radiol. 2012;35:1428–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Scaramuzzo L, Maccauro G, Rossi B, Messuti L, Maffulli N, Logroscino CA. Quality of life in patients following percutaneous PMMA acetabuloplasty for acetabular metastasis due to carcinoma. Acta Orthop Belg. 2009;75:484–9.PubMedGoogle Scholar
  21. 21.
    Botton E, Edeline J, Rolland Y, Vauleon E, Le Roux C, Mesbah H, et al. Cementoplasty for painful bone metastases: a series of 42 cases. Med Oncol. 2012;29:1378–83.PubMedCrossRefGoogle Scholar
  22. 22.
    Weber WA. Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med. 2005;46:983–95.PubMedGoogle Scholar
  23. 23.
    Schmid DT, Stoeckli SJ, Bandhauer F, Huguenin P, Schmid S, von Schulthess GK, et al. Impact of positron emission tomography on the initial staging and therapy in locoregional advanced squamous cell carcinoma of the head and neck. Laryngoscope. 2009;113:888–91.CrossRefGoogle Scholar
  24. 24.
    Costelloe CM, Macapinlac HA, Madewell JE, Fitzgerald NE, Mawlawi OR, Rohren EM, et al. 18F-FDG PET/CT as an indicator of progression-free and overall survival in osteosarcoma. J Nucl Med. 2009;50:340–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Paesmans M, Berghmans T, Dusart M, Garcia C, Hossein-Foucher C, Lafitte J-J, et al. Primary tumor standardized uptake value measured on fluorodeoxyglucose positron emission tomography is of prognostic value for survival in non-small cell lung cancer: update of a systematic review and meta-analysis by the European Lung Cancer Working Party for the International Association for the Study of Lung Cancer Staging Project. J Thorac Oncol. 2010;5:612–9.PubMedGoogle Scholar
  26. 26.
    Thie JA. Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med. 2004;45:1431–4.PubMedGoogle Scholar
  27. 27.
    Fuss M. Strategies of assessing and quantifying radiation treatment metabolic tumor response using F18 FDG positron emission tomography (PET). Acta Oncol. 2010;49:948–55.PubMedCrossRefGoogle Scholar
  28. 28.
    Chung MK, Jeong HS, Park SG, Jang JY, Son YI, Choi JY, et al. Metabolic tumor volume of [18F]-fluorodeoxyglucose positron emission tomography/computed tomography predicts short-term outcome to radiotherapy with or without chemotherapy in pharyngeal cancer. Clin Cancer Res. 2009;15:5861–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Chung HH, Kim JW, Han KH, Eo JS, Kang KW, Park NH, et al. Prognostic value of metabolic tumor volume measured by FDG-PET/CT in patients with cervical cancer. Gynecol Oncol. 2011;120:270–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Higgins KA, Hoang JK, Roach MC, Chino J, Yoo DS, Turkington TG, et al. Analysis of pretreatment FDG-PET SUV parameters in head-and-neck cancer: tumor SUVmean has superior prognostic value. Int J Radiat Oncol Biol Phys. 2012;82:548–53.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Nuclear Medicine 2013

Authors and Affiliations

  • Yong-il Kim
    • 1
  • Hyun Guy Kang
    • 2
    Email author
  • Seok-ki Kim
    • 3
  • June Hyuk Kim
    • 2
  • Han Soo Kim
    • 4
  1. 1.Department of Nuclear MedicineSeoul National University HospitalSeoulKorea
  2. 2.Orthopaedic Oncology ClinicNational Cancer CenterGoyang-siKorea
  3. 3.Department of Nuclear MedicineHospital and Research Institute, National Cancer CenterGoyang-siKorea
  4. 4.Department of Orthopaedic SurgerySeoul National University College of MedicineSeoulKorea

Personalised recommendations