Annals of Nuclear Medicine

, Volume 27, Issue 1, pp 17–24 | Cite as

A novel PET scanner with semiconductor detectors may improve diagnostic accuracy in the metastatic survey of head and neck cancer patients

  • Toshiki Takei
  • Tohru Shiga
  • Yuichi Morimoto
  • Wataru Takeuchi
  • Kikuo Umegaki
  • Kazuki Matsuzaki
  • Shozo Okamoto
  • Keiichi Magota
  • Toshihiro Hara
  • Satoshi Fukuda
  • Nagara Tamaki
Original article



Our research group developed new PET scanner with semiconductor detectors for high spatial resolution with low scatter noise. On head and neck cancer (HNC) surgery, FDG-PET may often provide false-positive findings in cervical node involvements. Accordingly, we assessed diagnostic accuracy using this new scanner in the HNC patients as compared with the conventional lutetium oxyorthosilicate (LSO) PET.


We prospectively studied FDG imaging in 35 HNC patients by both semiconductor PET and LSO-PET. At 60 min after 18F-FDG injection, two PET scans were obtained using both scanners consecutively and in random order. Two nuclear medicine specialists scored FDG abnormalities using 5 point scale system for receiver operating characteristic (ROC) curve analysis.


63 suspected of metastatic or recurrent lesions were evaluated and correlated by the final confirmation by pathological findings or clinical courses (malignant 26/benign 37). Semiconductor PET showed sensitivity of 92.3 % (24/26), specificity of 51.4 % (19/37), and accuracy of 68.2 % (43/63), while LSO-PET showed sensitivity of 84.6 % (22/26), specificity of 16.2 %(6/37), and accuracy of 44.4 % (28/63), respectively. Especially, semiconductor PET accurately diagnosed as true negative in the 13 of 14 lesions only detected by LSO-PET. ROC analyses revealed the diagnostic superiority of semiconductor PET from location of- and area under curve particularly in the study of small (≤10 mm) lesions.


A new novel semiconductor PET scanner can increase diagnostic accuracy with reduction in false positive findings in the HNC patients mainly due to higher spatial resolution and lower noise than the LSO-PET. This new technology can lead to more accurate diagnosis and the more optimal therapeutic tactics in head and neck surgery.


Semiconductor scanner PET Head and neck cancer 



We thank nuclear medicine technologists, Hidehiko Omote and Hiroshi Arai. We are grateful to Dr Kenji Hirata and Naoya Hattori for clinical study.

Conflict of interest



  1. 1.
    Shiga T, Morimoto Y, Kubo N, et al. A new PET scanner with semiconductor detectors enables better identification of intratumoral inhomogeneity. J Nucl Med. 2009;50(1):148–55.PubMedCrossRefGoogle Scholar
  2. 2.
    Ueno Y, Morimoto Y, Tsuchiya K, et al. Basic performance test of a prototype PET scanner using CdTe semiconductor detectors. IEEE Trans Nucl Sci. 2009;56(1):24–8.CrossRefGoogle Scholar
  3. 3.
    Morimoto Y, Ueno Y, Takeuchi W, et al. Development of a 3D brain PET scanner using CdTe semiconductor detectors and its first clinical application. IEEE Trans Nucl Sci. 2011;58:2181–9.CrossRefGoogle Scholar
  4. 4.
    Mori I, Takayama T, Motomura N. The CdTe detector module and its imaging performance. Ann Nucl Med. 2001;15(6):487–94.PubMedCrossRefGoogle Scholar
  5. 5.
    Darambara DG, Todd-Pokropek A. Solid state detectors in nuclear medicine. J Nucl Med. 2002;46(1):3–7.Google Scholar
  6. 6.
    Kiyono Y, Kuge Y, Katada Y, Kawashima H, Magata Y, Saji H. Applicability of a high-resolution small semiconductor gamma camera to small animal imaging. Nucl Med Commun. 2007;28(9):736–41.PubMedCrossRefGoogle Scholar
  7. 7.
    Kubo N, Zhao S, Fujiki Y, et al. Evaluating performance of a pixel array semiconductor SPECT system for small animal imaging. Ann Nucl Med. 2005;19(7):633–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Peng BH, Levin CS. Recent development in PET instrumentation. Curr Pharm Biotechnol. 2010;11(6):555–71.PubMedCrossRefGoogle Scholar
  9. 9.
    Stickel JR, Cherry SR. High-resolution PET detector design: modelling components of intrinsic spatial resolution. Phys Med Biol. 2005;50(2):179–95.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang D, Schultz CJ, Jursinic PA, et al. Initial experience of FDG-PET/CT guided IMRT of head-and-neck carcinoma. Int J Radiat Oncol Biol Phys. 2006;65(1):143–51.PubMedCrossRefGoogle Scholar
  11. 11.
    Ford EC, Herman J, Yorke E, Wahl RL. 18F-FDG PET/CT for image-guided and intensity-modulated radiotherapy. J Nucl Med. 2009;50(10):1655–65.PubMedCrossRefGoogle Scholar
  12. 12.
    Rothschild S, Studer G, Seifert B, et al. PET/CT staging followed by intensity-modulated radiotherapy (IMRT) improves treatment outcome of locally advanced pharyngeal carcinoma: a matched-pair comparison. Radiat Oncol. 2007;2:22.PubMedCrossRefGoogle Scholar
  13. 13.
    Castadot P, Geets X, Lee JA, Gregoire V. Adaptive functional image-guided IMRT in pharyngo-laryngeal squamous cell carcinoma: is the gain in dose distribution worth the effort? Radiother Oncol. 2011;101(3):343–50.PubMedCrossRefGoogle Scholar
  14. 14.
    Nishioka T, Shiga T, Shirato H, et al. Image fusion between 18FDG-PET and MRI/CT for radiotherapy planning of oropharyngeal and nasopharyngeal carcinomas. Int J Radiat Oncol Biol Phys. 2002;53(4):1051–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Geets X, Tomsej M, Lee JA, et al. Adaptive biological image-guided IMRT with anatomic and functional imaging in pharyngo-laryngeal tumors: impact on target volume delineation and dose distribution using helical tomotherapy. Radiother Oncol. 2007;85(1):105–15.PubMedCrossRefGoogle Scholar
  16. 16.
    Gupta T, Jain S, Agarwal JP, et al. Diagnostic performance of response assessment FDG-PET/CT in patients with head and neck squamous cell carcinoma treated with high-precision definitive (chemo)radiation. Radiother Oncol. 2010;97(2):194–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Deantonio L, Beldi D, Gambaro G, et al. FDG-PET/CT imaging for staging and radiotherapy treatment planning of head and neck carcinoma. Radiat Oncol. 2008;3:29.PubMedCrossRefGoogle Scholar
  18. 18.
    Veit-Haibach P, Luczak C, Wanke I, et al. TNM staging with FDG-PET/CT in patients with primary head and neck cancer. Eur J Nucl Med Mol Imaging. 2007;34(12):1953–62.PubMedCrossRefGoogle Scholar
  19. 19.
    Murakami R, Uozumi H, Hirai T, et al. Impact of FDG-PET/CT imaging on nodal staging for head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2007;68(2):377–82.PubMedCrossRefGoogle Scholar
  20. 20.
    Schoder H, Carlson DL, Kraus DH, et al. 18F-FDG PET/CT for detecting nodal metastases in patients with oral cancer staged N0 by clinical examination and CT/MRI. J Nucl Med. 2006;47(5):755–62.PubMedGoogle Scholar
  21. 21.
    Syed R, Bomanji JB, Nagabhushan N, et al. Impact of combined (18)F-FDG PET/CT in head and neck tumours. Br J Cancer. 2005;92(6):1046–50.PubMedCrossRefGoogle Scholar
  22. 22.
    Guido A, Fuccio L, Rombi B, et al. Combined 18F-FDG-PET/CT imaging in radiotherapy target delineation for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2009;73(3):759–63.PubMedCrossRefGoogle Scholar
  23. 23.
    Abgral R, Querellou S, Potard G, et al. Does 18F-FDG PET/CT improve the detection of posttreatment recurrence of head and neck squamous cell carcinoma in patients negative for disease on clinical follow-up? J Nucl Med. 2009;50(1):24–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Fakhry N, Barberet M, Lussato D, et al. Role of [18]F-FDG PET-CT in the management of the head and neck cancers. Bull Cancer. 2006;93(10):1017–25.PubMedGoogle Scholar
  25. 25.
    Nakagawa T, Yamada M, Suzuki Y. 18F-FDG uptake in reactive neck lymph nodes of oral cancer: relationship to lymphoid follicles. J Nucl Med. 2008;49(7):1053–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Eckardt J, Herzog H, Schafers KP, Kapplinger S, Schober O. Impact of the lower energy threshold on the NEMA NU2-2001 count-rate performance of a LSO based PET-CT scanner. Nuklearmedizin. 2008;47(5):210–4.PubMedGoogle Scholar
  27. 27.
    Casey M. Point spread function reconstruction in PET. Oxford: Siemens Molecular Imaging; 2007.Google Scholar
  28. 28.
    Panin V, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging. 2006;25:907–21.PubMedCrossRefGoogle Scholar
  29. 29.
    Chen CH. Simultaneous recovery of size and radioactivity concentration of small spheroids with PET data. J Nucl Med. 1999;40:118–30.PubMedGoogle Scholar
  30. 30.
    Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. effect of object size. J Comput Assist Tomogr. 1979;3:299–308.PubMedCrossRefGoogle Scholar
  31. 31.
    Ng SH, Yen TC, Chang JT, et al. Prospective study of 18F fluorodeoxyglucose positron emission tomography and computed tomography and magnetic resonance imaging in oral cavity squamous cell carcinoma with palpably negative neck. J Clin Oncol. 2006;24:4371–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Yen TC, Chang JT, Ng SH, et al. Staging of untreated squamous cell carcinoma of buccal mucosa with 18F-FDG PET: comparison with head and neck CT/MRI and histopathology. J Nucl Med. 2005;46:775–81.PubMedGoogle Scholar
  33. 33.
    de Jong HWAM, Knoess C, Lammertsma AA, et al. Performance characteristics of the high resolution research tomograph comparison of three prototypes. Paper presented at Nuclear Science Symposium Conference Record, 2004 IEEE, pp 16–22; 2004.Google Scholar
  34. 34.
    de Jong HW, van Velden FH, Kloet RW, Buijs FL, Boellaard R, Lammertsma AA. Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution, high sensitivity scanner. Phys Med Biol. 2007;52(5):1505–26.PubMedCrossRefGoogle Scholar
  35. 35.
    Bailey DL, Miller MP, Spinks TJ, et al. Experience with fully 3D PET and implications for future high-resolution 3D tomographs. Phys Med Biol. 1998;43(4):777–86.PubMedCrossRefGoogle Scholar
  36. 36.
    Antoch G, Saoudi N, Kuehl H, et al. Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-d-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol. 2004;22(21):4357–68.PubMedCrossRefGoogle Scholar
  37. 37.
    Bloch BN, Lenkinski RE, Rofsky NM. The role of magnetic resonance imaging (MRI) in prostate cancer imaging and staging at 1.5 and 3 Tesla: the Beth Israel Deaconess Medical Center (BIDMC) approach. Cancer Biomark. 2008;4(4–5):251–62.PubMedGoogle Scholar
  38. 38.
    Teo BK, Seo Y, Bacharach SL, et al. Partial-volume correction in PET: validation of an iterative postreconstruction method with phantom and patient data. J Nucl Med. 2007;48:802–10.PubMedGoogle Scholar
  39. 39.
    Knausl B, Hirtl A, Dorbrozemsky G, et al. PET based volume segmentation with emphasis on the iterative treu X algorithm. Z Med Phys (in press).Google Scholar
  40. 40.
    Cojocariu OM, Huguet F, Lefevre M, Perie S. Prognosis and predictive factors in head-and-neck cancers. Bull Cancer. 2009;96(4):369–78.PubMedGoogle Scholar
  41. 41.
    Hass HG, Schmidt A, Nehls O, Kaiser S. DNA ploidy, proliferative capacity and intratumoral heterogeneity in primary and recurrent head and neck squamous cell carcinomas (HNSCC)—potential implications for clinical management and treatment decisions. Oral Oncol. 2008;44(1):78–85.PubMedCrossRefGoogle Scholar
  42. 42.
    Gasparotto D, Maestro R. Molecular approaches to the staging of head and neck carcinomas (review). Int J Oncol. 2007;31(1):175–80.PubMedGoogle Scholar
  43. 43.
    Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology. 2004;231(2):305–32.PubMedCrossRefGoogle Scholar
  44. 44.
    de Bree R, Castelijns JA, Hoekstra OS, Leemans CR. Advances in imaging in the work-up of head and neck cancer patients. Oral Oncol. 2009;45(11):930–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Kyzas PA, Evangelou E, Denaxa-Kyza D, Ioannidis JP. 18F-fluorodeoxyglucose positron emission tomography to evaluate cervical node metastases in patients with head and neck squamous cell carcinoma: a meta-analysis. J Natl Cancer Inst. 2008;100(10):712–20.PubMedCrossRefGoogle Scholar
  46. 46.
    Subramaniam RM, Truong M, Peller P, Sakai O, Mercier G. Fluorodeoxyglucose-positron-emission tomography imaging of head and neck squamous cell cancer. AJNR Am J Neuroradiol. 2010;31(4):598–604.PubMedCrossRefGoogle Scholar
  47. 47.
    Chu HR, Kim JH, Yoon DY, Hwang HS, Rho YS. Additional diagnostic value of (18)F-FDG PET-CT in detecting retropharyngeal nodal metastases. Otolaryngol Head Neck Surg. 2009;141(5):633–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Salaun PY, Abgral R, Querellou S, et al. Does 18fluoro-fluorodeoxyglucose positron emission tomography improve recurrence detection in patients treated for head and neck squamous cell carcinoma with negative clinical follow-up? Head Neck. 2007;29(12):1115–20.PubMedCrossRefGoogle Scholar
  49. 49.
    Yamazaki Y, Saitoh M, Notani K, et al. Assessment of cervical lymph node metastases using FDG-PET in patients with head and neck cancer. Ann Nucl Med. 2008;22(3):177–84.PubMedCrossRefGoogle Scholar
  50. 50.
    Shiraki N, Hara M, Ogino H, et al. False-positive and true-negative hilar and mediastinal lymph nodes on FDG-PET—radiological–pathological correlation. Ann Nucl Med. 2004;18(1):23–8.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Nuclear Medicine 2012

Authors and Affiliations

  • Toshiki Takei
    • 1
  • Tohru Shiga
    • 1
  • Yuichi Morimoto
    • 2
  • Wataru Takeuchi
    • 2
  • Kikuo Umegaki
    • 3
  • Kazuki Matsuzaki
    • 2
  • Shozo Okamoto
    • 1
  • Keiichi Magota
    • 1
  • Toshihiro Hara
    • 4
  • Satoshi Fukuda
    • 4
  • Nagara Tamaki
    • 1
  1. 1.Department of Nuclear Medicine, Graduate School of MedicineHokkaido UniversitySapporoJapan
  2. 2.Central Research Laboratory, Hitachi LtdHitachiJapan
  3. 3.Department of Molecular ImagingGraduate School of Hokkaido UniversitySapporoJapan
  4. 4.Department of Otolaryngology, Head and Neck Surgery, Graduate School of MedicineHokkaido UniversitySapporoJapan

Personalised recommendations