Annals of Nuclear Medicine

, Volume 26, Issue 4, pp 289–297 | Cite as

Outpatient therapeutic nuclear oncology

  • J. Harvey Turner
Invited review article


In the beginning, nuclear medicine was radionuclide therapy, which has evolved into molecular tumour-targeted control of metastatic cancer. Safe, efficacious, clinical practice of therapeutic nuclear oncology may now be based upon accurate personalised dosimetry by quantitative gamma SPECT/CT imaging to prescribe tumoricidal activities without critical organ toxicity. Preferred therapy radionuclides possess gamma emission of modest energy and abundance to enable quantitative SPECT/CT imaging for calculation of the beta therapy dosimetry, without radiation exposure risk to hospital personnel, carers, family or members of the public. The safety of outpatient radiopharmaceutical therapy of cancer with Iodine-131, Samarium-153, Holmium-166, Rhenium-186, Rhenium-188, Lutetium-177 and Indium-111 is reviewed. Measured activity release rates and radiation exposure to carers and the public are all within recommendations and guidelines of international regulatory agencies and, when permitted by local regulatory authorities allow cost-effective, safe, outpatient radionuclide therapy of cancer without isolation in hospital.


Radiation protection Radionuclide cancer treatment Personalised dosimetry 



I wish to thank Ms. Jenny Lavin for preparation of the manuscript. No research grant funding or Pharmaceutical industry support was sought or received and no conflict of interest is declared.


  1. 1.
    Morschhauser F, Illidge T, Huglo D, et al. Efficacy and safety of yttrium-90 ibritumomab tiuxetan in patients with relapsed or refractory diffuse large B-cell lymphoma not appropriate for autologous stem-cell transplantation. Blood. 2007;110:54–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Council of the European Union. Council directive 97/43/EURATOM on health protection of individuals against the dangers of ionizing radiation in relation to medical exposure. Off J Eur Communities. 1997;180:0022–7.Google Scholar
  3. 3.
    Buckley SE, Chittenden SJ, Saran FH, et al. Whole-body dosimetry for individualized treatment planning of 131I-MIBG radionuclide therapy for neuroblastoma. J Nucl Med. 2009;50:1518–24.PubMedCrossRefGoogle Scholar
  4. 4.
    Turner JH. Defining pharmacokinetics for individual patient dosimetry in routine radiopeptide and radioimmunotherapy of cancer: Australian experience. Curr Pharm Des. 2009;15:966–82.PubMedCrossRefGoogle Scholar
  5. 5.
    ICRP. Release of patients after therapy with unsealed radionuclides. ICRP publication 94. Ann ICRP. 2004;34(2).Google Scholar
  6. 6.
    IAEA. Release of patients after radionuclide therapy. Vienna: International Atomic Energy Agency; 2009.Google Scholar
  7. 7.
    Hoefnagel CA, Clarke SEM, Fischer M, et al. Radionuclide therapy practice and facilities in Europe. Eur J Nucl Med. 1999;26:277–82.PubMedCrossRefGoogle Scholar
  8. 8.
    Harbert JC, Wells N. Radiation exposure to the families of radioactive patients. J Nucl Med. 1974;15:887–8.PubMedGoogle Scholar
  9. 9.
    Jacobson AP, Plato A, Toeroek D. Contamination of the home environment by patients treated with iodine-131: initial results. Am J Public Health. 1978;68:225–30.PubMedCrossRefGoogle Scholar
  10. 10.
    Grisby PW, Siegel BA, Baker S, et al. Radiation exposure from outpatient radioactive iodine (131I) therapy for thyroid carcinoma. JAMA. 2000;283:2272–4.CrossRefGoogle Scholar
  11. 11.
    Willegagion J, Sapienza M, Ono C, et al. Outpatient therapy of thyroid cancer: a safe nuclear medicine procedure. Clin Nucl Med. 2011;36:440–5.CrossRefGoogle Scholar
  12. 12.
    Gabriel S, Farman-Ara B, Bourrelly M, et al. Radiation doses to cohabitants of patients undergoing radioiodine ablation for thyroid cancer: poor compliance with radiation protection guidelines but low radiation exposure. Nucl Med Commun. 2011;32:829–33.PubMedCrossRefGoogle Scholar
  13. 13.
    Dauer LT, Zanzonico P, Tuttle RM, et al. The Japanese tsunami and resulting nuclear emergency at the Fukushima Daiichi Power Facility: technical, radiologic and response perspectives. J Nucl Med. 2011;52:1423–32.PubMedCrossRefGoogle Scholar
  14. 14.
    Australian Radiation Protection and Nuclear Safety Agency. Discharge of patients undergoing treatment with radioactive substances. Radiation protection series no. 4. ARPANSA; 2002.Google Scholar
  15. 15.
    Nuclear Regulatory Commission. Criteria for the release of individual administered radioactive materials, 10 CFR part 20 and 35: 62 FR 4120. Washington, DC: USNRC; 1997.Google Scholar
  16. 16.
    De Decker M, Turner JH. Automated module radiolabeling of peptides and antibodies with gallium-68, lutetium-177 and iodine-131. Cancer Biother Radiopharm. 2011 [Epub ahead of print].Google Scholar
  17. 17.
    Turner JH, Martindale AA, Boucek J, et al. 131I-anti CD 20 radioimmunotherapy of relapsed or refractory non-Hodgkins lymphoma: a phase II clinical trial of a non-myeloablative dose regimen of chimeric rituximab radiolabelled in a hospital. Cancer Biother Radiopharm. 2003;18:513–24.PubMedCrossRefGoogle Scholar
  18. 18.
    Seidlin SM, Marinelli LD, Oshry E. Radioactive iodine therapy: effect on functioning metastases of adenocarcinoma of the thyroid. JAMA. 1946;132:838–47.CrossRefGoogle Scholar
  19. 19.
    Higashi T, Nishii R, Yamada S, et al. Delayed initial radioactive iodine therapy resulted in poor survival in patients with metastatic differentiated thyroid carcinoma: a retrospective statistical analysis of 198 cases. J Nucl Med. 2011;52:683–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Pant GS, Sharma SK, Bal CS, et al. Radiation dose to family members of hyperthyroidism and thyroid cancer patients treated with 131-I. Radiat Prot Dosimetry. 2006;118:22–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Goldsmith SJ. The real cost of theoretic risk avoidance: the need to challenge unsubstantiated concerns about 131I therapy. J Nucl Med. 2011;5:681–2.CrossRefGoogle Scholar
  22. 22.
    Heads of the European Radiological Protection Competent Authorities. 131I therapy: patient release criteria. 30 June 2010.Google Scholar
  23. 23.
    IAEA Appendix I Safety Reports Series #63. IAEA; 2009.Google Scholar
  24. 24.
    Kinuya S. A nuclear power plant accident in Fukushima: what should we do? Ann Nucl Med. 2011. doi: 10.1007/s12149-011-0555-2.
  25. 25.
    Higashi T, Kudo T, Kinuya S. Radioactive iodine (131I) therapy for differentiated thyroid cancer in Japan: current issues with historical review and future perspective. Ann Nucl Med. 2011. doi: 10.1007/s12149-011-0553-4.
  26. 26.
    Liepe K, Kotzerke J. A comparative study of 188Re-HEDP, 186Re-HEDP, 153Sm-EDTMP and 89Sr in the treatment of painful skeletal metastases. Nucl Med Commun. 2007;28:623–30.PubMedCrossRefGoogle Scholar
  27. 27.
    Bodei L, Lam M, Chiesa C, et al. EANM procedure guideline for treatment of refractory metastatic bone pain. Eur J Nucl Med Mol Imaging. 2008;35:1934–40.PubMedCrossRefGoogle Scholar
  28. 28.
    Turner JH, Claringbold PG, Hetherington EL, et al. A phase I study of Samarium-153 ethylenediaminetetramethylene phosphonate for disseminated skeletal metastases. J Clin Oncol. 1989;17:1926–31.Google Scholar
  29. 29.
    Turner JH, Claringbold PG. A phase II study of treatment of painful multifocal skeletal metastases with single and repeated dose Samarium-153 ethylenediaminetetramethylene phosphonate. Eur J Cancer. 1991;27:1084–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Turner JH, Martindale AA, Sorby P, et al. Samarium-153 EDTMP therapy of disseminated skeletal metastasis. Eur J Nucl Med. 1989;15:784–95.PubMedCrossRefGoogle Scholar
  31. 31.
    Sinzinger H, Palumbo B, Granegger S. Repeated low-dose Sm-153 EDTMP therapy using the Vienna protocol is effective in pain palliation and lesion regression. J Nucl Med. 2008;49(Suppl):369.Google Scholar
  32. 32.
    Palmedo H, Manka-Waluch A, Albers P, et al. Repeated bone-targeted therapy for hormone-refractory prostate carcinoma: randomized phase II trial with new, high-energy radiopharmaceutical Rhenium-188 hydroxyethylidenediphosphonate. J Clin Oncol. 2003;21:2869–75.PubMedCrossRefGoogle Scholar
  33. 33.
    Paes FM, Serafini AN. Systemic metabolic radiopharmaceutical therapy in the treatment of metastatic bone pain. Semin Nucl Med. 2010;40:89–104.PubMedCrossRefGoogle Scholar
  34. 34.
    Lambert B, de Klerk JM. Clinical applications of 188Re-labelled radiopharmaceuticals for radionuclide therapy. Nucl Med Commun. 2006;27:223–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Bayouth JE, Macey DJ, Kasi LP, et al. Pharmacokinetics, dosimetry and toxicity of Holmium-166-DOTMP for bone marrow ablation in multiple myeloma. J Nucl Med. 1995;36:730–7.PubMedGoogle Scholar
  36. 36.
    Kaminski MS, Estes J, Zasadny KR, et al. Radioimmunotherapy with iodine 131I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood. 2000;96:1259–66.PubMedGoogle Scholar
  37. 37.
    US Nuclear Regulatory Commission. Release of patients administered radioactive materials. Washington, DC: US Nuclear Regulatory Commission; 1997 (Regulatory Guide 8.39, 1997).Google Scholar
  38. 38.
    Rutar FJ, Augustine SC, Colcher D, et al. Outpatient treatment with 131I-anti-B1 antibody: radiation exposure to family members. J Nucl Med. 2001;42:907–15.PubMedGoogle Scholar
  39. 39.
    Rutar FJ, Augustine SC, Kaminski MS, et al. Feasibility and safety of outpatient Bexxar® therapy (tositumomab and iodine I 131 tositumomab) for non-Hodgkin’s lymphoma based on radiation doses to family members. Clin Lymphoma. 2001;2:164–72.PubMedCrossRefGoogle Scholar
  40. 40.
    Calais PJ, Turner JH. Outpatient iodine-131-rituximab radioimmunotherapy of non-Hodgkin lymphoma: a study in safety. Clin Nucl Med. 2011 (in press).Google Scholar
  41. 41.
    Leahy MF, Turner JH. Radioimmunotherapy of relapsed indolent non-Hodgkin lymphoma with 131I-rituximab in routine clinical practice: 10 year single-institution experience of 142 consecutive patients. Blood. 2011;117:45–52.PubMedCrossRefGoogle Scholar
  42. 42.
    McQuillan AD, Macdonald WBG, Turner JH. Phase II study first-line Iodine-131-rituximab radioimmunotherapy of follicular non-Hodgkin lymphoma with Fluorine-18 FDG-PET-CT response end point. Blood 2011; (in press).Google Scholar
  43. 43.
    Lohri A, Forrer F, Campana B et al. Radioimmunotherapy (RIT) with 177Lutetium-DOTA-rituximab (177Lu-D-R): a phase I/II study in 30 patients with relapsing follicular, mantle cell and other indolent B-cell lymphomas. In: 50th ASH Annual Meeting and Exposition; 2008.Google Scholar
  44. 44.
    Kwekkeboom DJ, de Herder WW, Kam BL, et al. Treatment with the radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3] octreotate: toxicity, efficacy and survival. J Clin Oncol. 2008;26:2124–30.PubMedCrossRefGoogle Scholar
  45. 45.
    Fitschen J, Knoop BO, Behrendt R et al. Äußere Strahlenexposition und effektive Halbwertszeit bei therpie mit Lu-177-Dota-Tate. Z Med Phys. 2011. doi: 10.1016/j.zemedi.2011.05.001.
  46. 46.
    Brayshaw PA, Turner JH. Outpatient 177Lu-DOTA-tyr3-octreotate radiopeptide therapy of neuroendocrine tumours with personalized dosimetry and so to BED. Eur J Nucl Med Mol Imaging 2011 (under review).Google Scholar
  47. 47.
    Claringbold PG, Brayshaw PA, Price A, Turner JH. Phase II study of radiopeptide 177Lu-octreotate and capecitabine therapy of progressive disseminated neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2011;38:302–11.PubMedCrossRefGoogle Scholar
  48. 48.
    Claringbold PG, Brayshaw PA, Price RA, Turner JH. Phase I–II study of radiopeptide 177Lu-octreotate in combination with capecitabine and temozolomide in advanced low-grade neuroendocrine tumours. Acta Oncol. ESMO; 2011 (Abst).Google Scholar
  49. 49.
    Naji M, Zhao C, Welsh SJ, et al. 68Ga-DOTA-TATE PET vs. 123I-MIBG in identifying malignant neural crest tumours. Mol Imaging Biol. 2011;13:769–75.PubMedCrossRefGoogle Scholar
  50. 50.
    Grünwald F, Ezziddin S. 131I-metaiodobenzylguanidine therapy of neuroblastoma and other neuroblastoma tumors. Semin Nucl Med. 2010;40:153–63.PubMedCrossRefGoogle Scholar
  51. 51.
    Sudbrock F, Boldt F, Kobe C, et al. Radiation exposure in the environment of patients after application of radiopharmaceuticals. Nuklearmedizin. 2009;48:17–25.PubMedGoogle Scholar
  52. 52.
    Kwekkeboom DJ, de Herder WW, Casper HJ, et al. Peptide receptor radionuclide therapy in patients with gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med. 2010;40:78–88.PubMedCrossRefGoogle Scholar
  53. 53.
    Raoul J-L, Boucher E, Roland Y, et al. 131Iodine lipiodol therapy in hepatocellular carcinoma. Q J Nucl Med Mol Imaging. 2005;53:348–55.Google Scholar
  54. 54.
    Chua TC, Chu F, Butler P, et al. Intra-arterial iodine-131-lipiodol for unresectable hepatocellular carcinoma. Cancer. 2010;116:4069–77.PubMedCrossRefGoogle Scholar
  55. 55.
    Sundram F, Chau TCM, Onkhuudai P, et al. Preliminary results of transarterial Rhenium-188 HDD lipiodol in the treatment of inoperable primary hepatocellular carcinoma. Eur J Nucl Med Mol Imaging. 2004;31:250–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Antonarakis ES, Eisenberger MA. Expanding treatment options for metastatic prostate cancer. N Engl J Med. 2011;364:2055–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Bander NH, Milowsky MI, Nanus DM, et al. Phase I trial of 177Lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol. 2005;23:4591–601.PubMedCrossRefGoogle Scholar
  58. 58.
    Morris MJ, Milowsky MI, Pandit-Taskar N et al. Phase 2 trial of 177Lutetium (177Lu) radiolabeled anti-prostate-specific membrane antigen (PSMA) monoclonal antibody (mAb) J591 (177Lu-J591) in patients (pts) with metastatic androgen-independent prostate cancer (AIPC). J Clin Oncol. In: Proceedings of Asco Annual Meeting, part 1, vol 24, p. 18S; 2006.Google Scholar
  59. 59.
    Weill Medical College of Cornell University. 177Lu radiolabeled monoclonal antibody HuJ591 (177-Lu-J591) and ketoconazole in patients with prostate cancer. Clinical NCT00859781; 2009.Google Scholar
  60. 60.
    Olafsen T, Ho DT, Lipman AA et al. Highly-specific small animal PET imaging of prostate specific membrane antigen (PSMA) xenografts by an engineered humanized antibody fragment (minibody). In: ASCO.
  61. 61.
    Schroeder RPJ, Müller C, Reneman S, et al. A standardised study to compare prostate cancer targeting efficacy of five radiolabelled bombesin analogues. Eur J Nucl Med Mol Imaging. 2010;37:1386–96.PubMedCrossRefGoogle Scholar
  62. 62.
    Maddalena ME, Fox J, Chen J, et al. 177Lu-AMBA biodistribution, radiotherapeutic efficacy, imaging, and autoradiography in prostate cancer models with low GRP-R expression. J Nucl Med. 2009;50:2017–24.PubMedCrossRefGoogle Scholar
  63. 63.
    Nock B, Nikolopoulou A, Chiotellis E, et al. [99mTc] Demobesin 1, a novel potent bombesin analogue for GRP receptor-targeted tumour imaging. Eur J Nucl Med. 2003;30:247–58.CrossRefGoogle Scholar
  64. 64.
    Mansi R, Wang X, Forrer F, et al. Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours. Eur J Nucl Med Mol Imaging. 2011;38:97–107.PubMedCrossRefGoogle Scholar
  65. 65.
    Lam MGEH, Bosma TB, van Rijk PP, et al. 188Re-HEDP combined with capecitabine in hormone-refractory prostate cancer patients with bone metastases: a phase I safety and toxicity study. Eur J Nucl Med Mol Imaging. 2009;36:1425–33.PubMedCrossRefGoogle Scholar
  66. 66.
    Fizazi K, Beuzeboc P, Lumbroso J, et al. Phase II trial of consolidation docetaxel and samarium-153 in patients with bone metastases from castration-resistant prostate cancer. J Clin Oncol. 2009;27:2429–35.PubMedCrossRefGoogle Scholar
  67. 67.
    Olafsen T, Wu AM. Antibody vectors for imaging. Semin Nucl Med. 2010;40:167–81.PubMedCrossRefGoogle Scholar
  68. 68.
    Sharkey RM, Rossi EA, McBride WJ, et al. Recombinant bispecific monoclonal antibodies prepared by the dock-and-lock strategy for pretargeted radioimmunotherapy. Semin Nucl Med. 2010;40:190–203.PubMedCrossRefGoogle Scholar
  69. 69.
    Brans B, Van Den Eynde F, Audenaert K, et al. Depression and anxiety during isolation and radionuclide therapy. Nucl Med Commun. 2003;24:881–6.PubMedGoogle Scholar
  70. 70.
    The World Association of Radionuclide & Molecular Therapy (WARMTH).

Copyright information

© The Japanese Society of Nuclear Medicine 2012

Authors and Affiliations

  1. 1.Department of Nuclear Medicine, Fremantle HospitalThe University of Western AustraliaFremantleAustralia

Personalised recommendations