Annals of Nuclear Medicine

, Volume 25, Issue 7, pp 455–461 | Cite as

Clinical implications of the body surface area method versus partition model dosimetry for yttrium-90 radioembolization using resin microspheres: a technical review

  • Yung Hsiang Kao
  • Eik Hock Tan
  • Chee Eng Ng
  • Soon Whatt Goh
Review article


Yttrium-90 (Y-90) radioembolization is becoming established as an effective therapeutic modality for inoperable liver tumors. For resin microspheres, the ‘body surface area (BSA)’ method and the partition model can both be used for Y-90 activity calculation. The BSA method is semi-empirical, but more commonly used due its simplicity. The partition model is more accurate, scientifically sound and personalized, but less popular due to its complexity. This article provides a technical comparison of both methods with an emphasis on its clinical implications. Future dosimetric techniques for Y-90 radioembolization based on emerging technologies are also discussed.


Yttrium-90 radioembolization Yttrium-90 selective internal radiation therapy Tumor-to-normal liver ratio Body surface area method Partition model dosimetry 


  1. 1.
    Salem R, Lewandowski RJ, Sato KT, Atassi B, Ryu RK, Ibrahim S, et al. Technical aspects of radioembolization with 90Y microspheres. Tech Vasc Interv Radiol. 2007;10:12–29.PubMedCrossRefGoogle Scholar
  2. 2.
    Ahmadzadehfar H, Biersack HJ, Ezziddin S. Radioembolization of liver tumors with yttrium-90 microspheres. Semin Nucl Med. 2010;40:105–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Wang SC, Bester L, Burnes JP, Clouston JE, Hugh TJ, Little AF, et al. Clinical care and technical recommendations for 90yttrium microsphere treatment of liver cancer. J Med Imaging Radiat Oncol. 2010;54:178–87.PubMedCrossRefGoogle Scholar
  4. 4.
    Lau WY, Kennedy AS, Kim YH, Lai HK, Lee RC, Leung TW, et al. Patient selection and activity planning guide for selective internal radiotherapy with yttrium-90 resin microspheres. Int J Radiat Oncol Biol Phys. 2010 [Epub ahead of print].Google Scholar
  5. 5.
    Salem R, Lewandowski RJ, Mulcahy MF, Riaz A, Ryu RK, Ibrahim S, et al. Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology. 2010;138:52–64.PubMedCrossRefGoogle Scholar
  6. 6.
    Riaz A, Lewandowski RJ, Kulik LM, Mulcahy MF, Sato KT, Ryu RK, et al. Complications following radioembolization with yttrium-90 microspheres: a comprehensive literature review. J Vasc Interv Radiol. 2009;20:1121–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Sirtex Medical Limited, Lane Cove, New South Wales, Australia. Sirtex Medical training manual (version TRN-US-03, Undated.
  8. 8.
    Lau WY, Leung TW, Ho S, Chan M, Leung NW, Lin J, et al. Diagnostic pharmaco-scintigraphy with hepatic intra-arterial technetium-99m macroaggregated albumin in the determination of tumour to non-tumour uptake ratio in hepatocellular carcinoma. Br J Radiol. 1994;67:136–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Burton MA, Gray BN, Klemp PF, Kelleher DK, Hardy N. Selective internal radiation therapy: distribution of radiation in the liver. Eur J Cancer Clin Oncol. 1989;25:1487–91.PubMedCrossRefGoogle Scholar
  10. 10.
    Fox RA, Klemp PF, Egan G, Mina LL, Burton MA, Gray BN. Dose distribution following selective internal radiation therapy. Int J Radiat Oncol Biol Phys. 1991;21:463–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Ho S, Lau WY, Leung TW, Chan M, Chan KW, Lee WY, et al. Tumor-to-normal uptake ratio of 90Y microspheres in hepatic cancer assessed with 99Tcm macroaggregated albumin. Br J Radiol. 1997;70:823–8.PubMedGoogle Scholar
  12. 12.
    Kennedy AS, Nutting C, Coldwell D, Gaiser J, Drachenberg C. Pathologic response and microdosimetry of (90)Y microspheres in man: review of four explanted whole livers. Int J Radiat Oncol Biol Phys. 2004;1(60):1552–630.Google Scholar
  13. 13.
    Gates VL, Esmail AA, Marshall K, Spies S, Salem R. Internal pair production of 90Y permits hepatic localization of microspheres using routine PET: proof of concept. J Nucl Med. 2011;52:72–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Flamen P, Vanderlinden B, Delatte P, Ghanem G, Ameye L, Van Den Eynde M, et al. Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with Yttrium-90 labeled resin microspheres. Phys Med Biol. 2008;21(53):6591–603.CrossRefGoogle Scholar
  15. 15.
    Cremonesi M, Ferrari M, Bartolomei M, Orsi F, Bonomo G, Aricò D, et al. Radioembolisation with 90Y-microspheres: dosimetric and radiobiological investigation for multi-cycle treatment. Eur J Nucl Med Mol Imaging. 2008;35:2088–96.PubMedCrossRefGoogle Scholar
  16. 16.
    Riaz A, Gates VL, Atassi B, Lewandowski RJ, Mulcahy MF, Ryu RK, et al. Radiation segmentectomy: a novel approach to increase safety and efficacy of radioembolization. Int J Radiat Oncol Biol Phys. 2011;1(79):163–71.Google Scholar
  17. 17.
    Ho S, Lau WY, Leung TW, Chan M, Johnson PJ, Li AK. Clinical evaluation of the partition model for estimating radiation doses from yttrium-90 microspheres in the treatment of hepatic cancer. Eur J Nucl Med. 1997;24:293–8.PubMedGoogle Scholar
  18. 18.
    Campbell JM, Wong CO, Muzik O, Marples B, Joiner M, Burmeister J. Early dose response to yttrium-90 microsphere treatment of metastatic liver cancer by a patient-specific method using single photon emission computed tomography and positron emission tomography. Int J Radiat Oncol Biol Phys. 2009;1(74):313–20.Google Scholar
  19. 19.
    Hendlisz A, Van den Eynde M, Peeters M, Maleux G, Lambert B, Vannoote J, et al. Phase III trial comparing protracted intravenous fluorouracil infusion alone or with yttrium-90 resin microspheres radioembolization for liver-limited metastatic colorectal cancer refractory to standard chemotherapy. J Clin Oncol. 2010;10(28):3687–94.CrossRefGoogle Scholar
  20. 20.
    Flux G, Bardies M, Chiesa C, Monsieurs M, Savolainen S, Strand SE, et al. Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”. Eur J Nucl Med Mol Imaging. 2007;34:1699–700.PubMedCrossRefGoogle Scholar
  21. 21.
    Gurney H. Developing a new framework for dose calculation. J Clin Oncol. 2006;1(24):1489–90.CrossRefGoogle Scholar
  22. 22.
    Ho S, Lau WY, Leung TW, Chan M, Ngar YK, Johnson PJ, et al. Partition model for estimating radiation doses from yttrium-90 microspheres in treating hepatic tumours. Eur J Nucl Med. 1996;23:947–52.PubMedCrossRefGoogle Scholar
  23. 23.
    Fox RA, Klemp PF, Egan G, Mina LL, Burton MA, Gray BN. Dose distribution following selective internal radiation therapy. Int J Radiat Oncol Biol Phys. 1991;21:463–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Campbell AM, Bailey IH, Burton MA. Analysis of the distribution of intra-arterial microspheres in human liver following hepatic yttrium-90 microsphere therapy. Phys Med Biol. 2000;45:1023–33.PubMedCrossRefGoogle Scholar
  25. 25.
    Campbell AM, Bailey IH, Burton MA. Tumour dosimetry in human liver following hepatic yttrium-90 microsphere therapy. Phys Med Biol. 2001;46:487–98.PubMedCrossRefGoogle Scholar
  26. 26.
    Salem R, Lewandowski RJ, Gates VL, Nutting CW, Murthy R, Rose SC, et al. Research reporting standards for radioembolization of hepatic malignancies. J Vasc Interv Radiol. 2011;22:265–78.PubMedCrossRefGoogle Scholar
  27. 27.
    Sarfaraz M, Kennedy AS, Lodge MA, Li XA, Wu X, Yu CX. Radiation absorbed dose distribution in a patient treated with yttrium-90 microspheres for hepatocellular carcinoma. Med Phys. 2004;31:2449–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Gulec SA, Sztejnberg ML, Siegel JA, Jevremovic T, Stabin M. Hepatic structural dosimetry in (90)Y microsphere treatment: a Monte Carlo modeling approach based on lobular microanatomy. J Nucl Med. 2010;51:301–10.PubMedCrossRefGoogle Scholar
  29. 29.
    Avila-Rodriguez MA, Selwyn RG, Hampel JA, Thomadsen BR, Dejesus OT, Converse AK, et al. Positron-emitting resin microspheres as surrogates of 90Y SIR-Spheres: a radiolabeling and stability study. Nucl Med Biol. 2007;34:585–90.PubMedCrossRefGoogle Scholar
  30. 30.
    Selwyn RG, Avila-Rodriguez MA, Converse AK, Hampel JA, Jaskowiak CJ, McDermott JC, et al. 18F-labeled resin microspheres as surrogates for 90Y resin microspheres used in the treatment of hepatic tumors: a radiolabeling and PET validation study. Phys Med Biol. 2007;21(52):7397–408.CrossRefGoogle Scholar
  31. 31.
    Schiller E, Bergmann R, Pietzsch J, Noll B, Sterger A, Johannsen B, et al. Yttrium-86-labelled human serum albumin microspheres: relation of surface structure with in vivo stability. Nucl Med Biol. 2008;35:227–32.PubMedCrossRefGoogle Scholar
  32. 32.
    Maziere B, Loc’h C, Steinling M, Comar D. Stable labelling of serum albumin microspheres with gallium-68. Int J Radiat Appl Instrum A. 1986;37:360–1.CrossRefGoogle Scholar
  33. 33.
    Rhee TK, Omary RA, Gates V, Mounajjed T, Larson AC, Barakat O, et al. The effect of catheter-directed CT angiography on yttrium-90 radioembolization treatment of hepatocellular carcinoma. J Vasc Interv Radiol. 2005;16:1085–9.PubMedGoogle Scholar
  34. 34.
    Kennedy AS, Kleinstreuer C, Basciano CA, Dezarn WA. Computer modeling of yttrium-90-microsphere transport in the hepatic arterial tree to improve clinical outcomes. Int J Radiat Oncol Biol Phys. 2010;1(76):631–7.CrossRefGoogle Scholar
  35. 35.
    Basciano CA, Kleinstreuer C, Kennedy AS, Dezarn WA, Childress E. Computer modeling of controlled microsphere release and targeting in a representative hepatic artery system. Ann Biomed Eng. 2010;38:1862–79.PubMedCrossRefGoogle Scholar
  36. 36.
    Kleinstreuer, C. Methods and devices for targeted injection of radioactive microspheres. U.S. Patent Application 61/127,889, July 28, 2009, NC State University, Raleigh, NC.Google Scholar
  37. 37.
    Lhommel R, van Elmbt L, Goffette P, Van den Eynde M, Jamar F, Pauwels S, et al. Feasibility of 90Y TOF PET-based dosimetry in liver metastasis therapy using SIR-Spheres. Eur J Nucl Med Mol Imaging. 2010;37:1654–62.PubMedCrossRefGoogle Scholar
  38. 38.
    Lhommel R, Goffette P, Van den Eynde M, Jamar F, Pauwels S, Bilbao JI, et al. Yttrium-90 TOF PET scan demonstrates high-resolution biodistribution after liver SIRT. Eur J Nucl Med Mol Imaging. 2009;36:1696.PubMedCrossRefGoogle Scholar
  39. 39.
    Blanchard RJ, Lafave JW, Kim YS, Frye CS, Ritchie WP, Perry JF Jr. Treatment of patients with advanced cancer utilizing Y90 microspheres. Cancer. 1965;18:375–80.PubMedCrossRefGoogle Scholar
  40. 40.
    MacKie S, de Silva S, Aslan P, Ladd L, Houang M, Cade D, et al. Super selective radio embolization of the porcine kidney with 90yttrium resin microspheres: a feasibility, safety and dose ranging study. J Urol. 2011;185:285–90.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Nuclear Medicine 2011

Authors and Affiliations

  • Yung Hsiang Kao
    • 1
  • Eik Hock Tan
    • 1
  • Chee Eng Ng
    • 1
  • Soon Whatt Goh
    • 1
  1. 1.Department of Nuclear Medicine and PETSingapore General HospitalSingaporeSingapore

Personalised recommendations