Annals of Nuclear Medicine

, Volume 23, Issue 3, pp 257–267 | Cite as

90Y bremsstrahlung emission computed tomography using gamma cameras

  • Shigeki Ito
  • Hiroyuki Kurosawa
  • Hiroyuki Kasahara
  • Satomi Teraoka
  • Eiji Ariga
  • Shizuhiko Deji
  • Masahiro Hirota
  • Takuya Saze
  • Takao Minamizawa
  • Kunihide Nishizawa
Original Article



This study demonstrates images obtained by 90Y bremsstrahlung emission computed tomography (BECT), and characterizes the system performance of gamma cameras.


90Y BECT images of phantoms were acquired using a gamma camera equipped with a medium energy general purpose parallel-hole collimator. Three energy window widths of 50% (57–94 keV) centered at 75 keV, 30% (102–138 keV) at 120 keV, and 50% (139–232 keV) at 185 keV were set on a 90Y bremsstrahlung spectrum. The images obtained with three energy windows were reconstructed using filtered back projection (FBP) and ordered subsets expectation maximization (OSEM) methods. The images of the sum window were obtained by fusing the images of the 75, 120, and 185 keV windows.


The OSEM method improved the full width at half maximum by 20% and the standard deviation by 9% compared with the FBP method. BECT displayed 90Y biodistribution and quantified 90Y activity. BECT images obtained with OSEM method using the 120 keV window showed the highest resolution and lowest uncertainty. The sum window showed the highest sensitivity, while its resolution was 10% inferior to that of the 120 keV window. One whole-body image can be taken over 100 min using the sum window. An absorber to cover the body surface reduced background by 30%.


90Y BECT imaging can be used for patient assessment without modifying current treatment procedures.


90Y-Ibritumomab tiuxetan 90Y bremsstrahlung Emission computed tomography Gamma camera 


  1. 1.
    Biogen Idec Inc. Zevalin (ibritumomab tiuxetan). San Diego: Biogen Idec Inc.; 2005.Google Scholar
  2. 2.
    Press OW, Appelbaum F, Ledbetter JA, Martin PJ, Zarling J, Kidd P, et al. Monoclonal antibody 1F5 (anti-CD20) serotherapy of human B-cell lymphomas. Blood. 1987;69:584–91.PubMedGoogle Scholar
  3. 3.
    Witzig TE, Flinn IW, Gordon LI, Emmanouilides C, Czuczman MS, Saleh MN, et al. Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20:3262–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Witzig TE, Gordon LI, Cabanillas F, Czuczman MS, Emmanouilides C, Joyce R, et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20:2453–63.PubMedCrossRefGoogle Scholar
  5. 5.
    Gordon LI, Molina A, Witzig T, Emmanouilides C, Raubtischek A, Darif M, et al. Durable responses after ibritumomab tiuxetan radioimmunotherapy for CD20+ B-cell lymphoma: long-term follow-up of a phase 1/2 study. Blood. 2004;103:4429–31.PubMedCrossRefGoogle Scholar
  6. 6.
    Firestone RB, Shirley VS, editors. Table of isotopes. 8th ed. New York: Wiley; 1996.Google Scholar
  7. 7.
    Knoll GF. Radiation detection and measurement. 2nd ed. New York: Wiley; 1989.Google Scholar
  8. 8.
    Williams PL, editor. Gray’s anatomy. 37th ed. Edinburgh: Churchill Livingstone; 1989.Google Scholar
  9. 9.
    Conti PS, White C, Pieslor P, Molina A, Aussie J, Foster P. The role of imaging with 111In-ibritumomab tiuxetan in the ibritumomab tiuxetan (Zevalin) regimen: results from a Zevalin Imaging Registry. J Nucl Med. 2005;46:1813–8.Google Scholar
  10. 10.
    Naruki Y, Carrasquillo JA, Reynolds JC, Maloney PJ, Frincke JM, Neumann RD, et al. Differential cellular catabolism of indium-111, yttrium-90 and iodine-125 radiolabeled T101 and anti-CD5 monoclonal antibody. Nucl Med Biol. 1990;17:201–8.Google Scholar
  11. 11.
    Otte A. Diagnostic imaging prior to 90Y-ibritumomab tiuxetan (Zevalin®) treatment in follicular non-Hodgkin’s lymphoma. Hell J Nucl Med. 2008;1:12–5.Google Scholar
  12. 12.
    Tennvall J, Fischer M, Delaloye AB, Bombardieri E, Bodei L, Giammarile F, et al. EANM procedure guideline for radio-immunotherapy for B-cell lymphoma with 90Y-radiolabelled ibritumomab tiuxetan (Zevalin). Eur J Nucl Med Mol Imaging. 2007;34:616–22.PubMedCrossRefGoogle Scholar
  13. 13.
    Wiseman GA, White CA, Stabin M, Dunn WL, Erwin W, Dahlbom M, et al. Phase I/II 90Y-Zevalin (yttrium-90 ibritumomab tiuxetan, IDEC-Y2B8) radioimmunotherapy dosimetry results in relapsed or refractory non-Hodgkin’s lymphoma. Eur J Nucl Med. 2000;27:766–77.PubMedCrossRefGoogle Scholar
  14. 14.
    Furhang EE, Chui CS, Kolbert KS, Larson SM, Sgouros G. Implementation of a Monte Carlo dosimetry method for patient-specific internal emitter therapy. Med Phys. 1997;24:1163–72.PubMedCrossRefGoogle Scholar
  15. 15.
    Kolbert KS, Sgouros G, Scott AM, Bronstein JE, Malane RA, Zhang J, et al. Implementation and evaluation of patient-specific three-dimensional internal dosimetry. J Nucl Med. 1997;38:301–8.PubMedGoogle Scholar
  16. 16.
    Sgouros G, Chiu S, Pentlow KS, Brester LJ, Kalaigian H, Baldwin B, et al. Three-dimensional dosimetry for radioimmunotherapy treatment planning. J Nucl Med. 1993;34:1595–601.PubMedGoogle Scholar
  17. 17.
    Shen S, DeNardo GL, Yuan A, DeNardo DA, DeNardo SJ. Planar gamma camera imaging and quantitation of yttrium-90 bremsstrahlung. J Nucl Med. 1994;35:1381–9.PubMedGoogle Scholar
  18. 18.
    Shen S, DeNardo GL, Yuan A, DeNardo SJ. Quantitative bremsstrahlung imaging of yttrium-90 using a Wiener filter. Med Phys. 1994;21:1409–17.PubMedCrossRefGoogle Scholar
  19. 19.
    Subcommittee for Standardization of Radionuclide Imaging, Medical and Pharmaceutical Committee. Test conditions of performance of single photon emission computed tomography unit. Radioisotopes 1984;33:162–9. (in Japanese)Google Scholar
  20. 20.
    National Electrical Manufacturers Association. Performance measurements of scintillation camera (NEMA Standards Publication No. NU1-1994). Washington, DC: NEMA;1994.Google Scholar
  21. 21.
    Bruyant PP, Sau J, Mallet JJ. Streak artifact reduction in filtered back projection using a level line-based interpretation method. J Nucl Med. 2000;41:1913–9.PubMedGoogle Scholar
  22. 22.
    Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Blocklet D, Seret A, Popa N, Schoutens A. Maximum-likelihood reconstruction with ordered subsets in bone SPECT. J Nucl Med. 1999;40:1978–84.PubMedGoogle Scholar
  24. 24.
    Carlier T, Oudoux A, Mirallié E, Seret A, Daumy I, Leux C, et al. (99m)Tc-MIBI pinhole SPECT in primary hyperparathyroidism: comparison with conventional SPECT, planar scintigraphy and ultrasonography. Eur J Nucl Med Mol Imaging. 2008;35:637–43.PubMedCrossRefGoogle Scholar
  25. 25.
    Zeniya T, Watabe H, Aoi T, Kim KM, Teramoto N, Hayashi T, et al. A new reconstruction strategy for image improvement in pinhole SPECT. Eur J Nucl Med Mol Imaging. 2004;31:1166–72.PubMedCrossRefGoogle Scholar
  26. 26.
    Lee KH. Computers in nuclear medicine: a practical approach. New York: The Society of Nuclear Medicine; 1991.Google Scholar
  27. 27.
    Chang LT. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci. 1978;25:638–43.CrossRefGoogle Scholar
  28. 28.
    Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imaging. 1991;10:408–12.PubMedCrossRefGoogle Scholar
  29. 29.
    Ichihara T, Ogawa K, Motomura N, Kubo A, Hashimoto S. Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT. J Nucl Med. 1993;34:2216–21.PubMedGoogle Scholar
  30. 30.
    Ogawa K, Ichihara T, Kubo A. Accurate scatter correction in single-photon emission CT. Ann Nucl Med Sci. 1994;7:145–50.Google Scholar
  31. 31.
    Yen T, Tzen K, Chen K, Tsai C. The value of gallium-67 and thallium-201 whole-body and single-photon emission tomography images in dialysis-related b2-microglobulin amyloid. Eur J Nucl Med Mol Imaging. 2000;27:56–61.CrossRefGoogle Scholar
  32. 32.
    Patton JA, Delbeke D, Sandler MP. Image fusion using an integrated dual-headed coincidence camera with X-ray tube based attenuation maps. J Nucl Med. 2000;41:1364–8.PubMedGoogle Scholar

Copyright information

© The Japanese Society of Nuclear Medicine 2009

Authors and Affiliations

  • Shigeki Ito
    • 1
  • Hiroyuki Kurosawa
    • 2
  • Hiroyuki Kasahara
    • 2
  • Satomi Teraoka
    • 2
  • Eiji Ariga
    • 3
  • Shizuhiko Deji
    • 4
  • Masahiro Hirota
    • 5
  • Takuya Saze
    • 6
  • Takao Minamizawa
    • 2
  • Kunihide Nishizawa
    • 1
  1. 1.Radioisotope Research CenterNagoya UniversityNagoyaJapan
  2. 2.Research DepartmentFuji Film RI Pharma Co. LtdChibaJapan
  3. 3.Diagnostic Imaging CenterNagoya Daini Red Cross HospitalNagoyaJapan
  4. 4.Department of Radiological TechnologyKobe Co-Medical CollegeKobeJapan
  5. 5.Department of Nuclear Engineering and ManagementThe University of TokyoTokyoJapan
  6. 6.Radioisotope Research CenterTokushima UniversityTokushimaJapan

Personalised recommendations