Annals of Nuclear Medicine

, Volume 21, Issue 4, pp 209–215 | Cite as

2-[Fluorine-18]-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography versus whole-body diffusion-weighted MRI for detection of malignant lesions: initial experience

  • Tsuyoshi Komori
  • Isamu Narabayashi
  • Kaname Matsumura
  • Mitsuru Matsuki
  • Hiroyuki Akagi
  • Yasuharu Ogura
  • Fumitoshi Aga
  • Itaru Adachi
ORIGINAL ARTICLE

Abstract

Objectives

The new magnetic resonance whole body diffusion-weighted imaging with background body signal suppression (DWIBS) uses short tau inversion recovery-echo planar imaging sequence under normal respiration. DWIBS is different from 2-[fluorine-18]-fluoro-2-deoxy-d-glucose positron emission tomography (18F-FDG PET) imaging in technology, but their images are similar. We compared the two modalities regarding the detection and characterization of malignant tumors.

Methods

DWIBS and 18F-FDG PET/computed tomography (CT) were performed on 16 cancer patients on the same day. The diagnoses were the following: lung cancer (n = 12), colon cancer (n = 2), breast cancer (n = 1), and pulmonary metastasis (n = 1). A total of 27 malignant tumors (15 lung cancer, 5 pulmonary metastases of parathyroid cancer, 3 pulmonary metastases of lung cancer, 3 colon cancer, 1 breast cancer) and seven reference organs around malignant lesions (two liver regions, four normal lymph nodes, one muscle region) were evaluated visually and quantitatively using the apparent diffusion coefficient (ADC) (×10−3 mm2/s) and standardized uptake value (SUV).

Results

Twenty-five (92.6%) of the 27 malignant lesions were detected visually with DWIBS imaging in contrast to 22 malignant tumors (81.5%) with 18F-FDG PET/CT imaging. The quantitative evaluation showed that there was a significant difference between the mean SUVs of the reference organs (n = 7, 1.48 ± 0.62) and the malignant (n = 22, 5.36 ± 2.80) lesions (P < 0.01). However, there was no significant difference between the mean ADCs of the reference organs (n = 7, 1.54 ± 0.24) and the malignant (n = 25, 1.18 ± 0.70) lesions.

Conclusions

DWIBS can be used for the detection of malignant tumors or benign tumors; however, it may be difficult to differentiate between benign and malignant lesions by ADC.

Key words

Positron emission tomography/computed tomography Fluorodeoxyglucose Diffusion-weighted magnetic resonance imaging Oncology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wahl, RL, Quint, LE, Greenough, RL, Meyer, CR, White, RI, Orringer, MB 1994Staging of mediastinal non-small cell lung cancer with FDG PET, CT, and fusion images: preliminary prospective evaluationRadiology1913717PubMedGoogle Scholar
  2. 2.
    Bar-Shalom, R, Yefremov, N, Guralnik, L, Gaitini, D, Frenkel, A, Kuten, A,  et al. 2003Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient managementJ Nucl Med4412009PubMedGoogle Scholar
  3. 3.
    Antoch, G, Stattaus, J, Nemat, AT, Marnitz, S, Beyer, T, Kuehl, H,  et al. 2003Non-small cell lung cancer: dual-modality PET/CT in preoperative stagingRadiology2295263PubMedCrossRefGoogle Scholar
  4. 4.
    Lardinois, D, Weder, W, Hany, TF, Kamel, EM, Korom, S, Seifert, B,  et al. 2003Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomographyN Engl J Med34825007PubMedCrossRefGoogle Scholar
  5. 5.
    Yuan, S, Yu, Y, Chao, KS, Fu, Z, Yin, Y, Liu, T,  et al. 2006Additional value of PET/CT over PET in assessment of locoregional lymph nodes in thoracic esophageal squamous cell cancerJ Nucl Med4712559PubMedGoogle Scholar
  6. 6.
    von Schulthess, GK, Steinert, HC, Hany, TF 2006Integrated PET/CT: current applications and future directionsRadiology23840522PubMedCrossRefGoogle Scholar
  7. 7.
    Metser, U, Miller, E, Lerman, H, Lievshitz, G, Avital, S, Even-Sapir, E 200618F-FDG PET/CT in the evaluation of adrenal massesJ Nucl Med47327PubMedGoogle Scholar
  8. 8.
    Warach, S, Chien, D, Li, W, Ronthal, M, Edelman, RR 1992Fast magnetic resonance diffusion-weighted imaging of acute human strokeNeurology42171723PubMedGoogle Scholar
  9. 9.
    Kim, T, Murakami, T, Takahashi, S, Hori, M, Tsuda, K, Nakamura, H 1999Diffusion-weighted single-shot echo planar MR imaging for liver diseaseAJR1733938PubMedGoogle Scholar
  10. 10.
    Hargaden, G, O'Connell, M, Kavanagh, E, Powell1, T, Ward, R, Eustace, S 2003Current concepts in whole-body imaging using turbo short tau inversion recovery MR imagingAJR18024752PubMedGoogle Scholar
  11. 11.
    Eustace, S, Tello, R, Yucel, EK 1998Whole-body turbo STIR MR imaging in unknown primary tumour detectionJ Magn Reson Imag87513CrossRefGoogle Scholar
  12. 12.
    Taouli, B, Vilgrain, V, Dumont, E, Daire, JL, Fan, B, Menu, Y 2003Evaluation of liver diffusion isotrophy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patientsRadiology226718PubMedCrossRefGoogle Scholar
  13. 13.
    Namimoto, T, Yamashita, Y, Sumi, S, Tang, Y, Takahashi, M 1997Focal liver masses: characterization with diffusion-weighted echo-planar MR imagingRadiology20473944PubMedGoogle Scholar
  14. 14.
    Takahara, T, Imai, Y, Yamashita, T, Yasuda, S, Nasu, S, Van Cauteren, M 2004Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D displayRad Med2227582Google Scholar
  15. 15.
    Thoeny, HC, Keyzer, FD, Oyen, RH, Peeters, RR 2005Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experienceRadiology2359117PubMedCrossRefGoogle Scholar
  16. 16.
    Issa, B 2002In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissues using echo-planar imagingJ Magn Reson Imag16196200CrossRefGoogle Scholar
  17. 17.
    Shimofusa, R, Fujimoto, H, Akamata, H, Motoori, K, Yamamoto, S, Ueda, T,  et al. 2004Diffusion-weighted imaging of prostate cancerJ Comput Assist Tomogr2914953CrossRefGoogle Scholar
  18. 18.
    Toyoshima, S, Noguchi, K, Seto, H, Shimizu, M, Watanabe, N 2000Functional evaluation of hydronephrosis by diffusion-weighted MR imaging: relationship between apparent diffusion coefficient and split glomerular rateActa Radiologica416426PubMedCrossRefGoogle Scholar
  19. 19.
    Nasu, K, Kuroki, Y, Kuroki, S, Murakami, K, Nawano, S, Moriyama, N 2004Diffusion-weighted single shot planar imaging of colorectal cancer using a sensitivity-encoding techniqueJpn J Clin Oncol346206PubMedCrossRefGoogle Scholar
  20. 20.
    Nasu, K, Kuroki, Y, Nawano, S, Kuroki, S, Tsukamoto, T, Yamamoto, S,  et al. 2006Hepatic metastases: diffusion-weighted sensitivity-encoding versus SPIO-enhanced MR imagingRadiology23912230PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society of Nuclear Medicine 2007

Authors and Affiliations

  • Tsuyoshi Komori
    • 1
  • Isamu Narabayashi
    • 1
  • Kaname Matsumura
    • 2
  • Mitsuru Matsuki
    • 1
  • Hiroyuki Akagi
    • 1
  • Yasuharu Ogura
    • 1
  • Fumitoshi Aga
    • 1
  • Itaru Adachi
    • 1
  1. 1.Department of RadiologyOsaka Medical CollegeOsakaJapan
  2. 2.Higashi Temma ClinicOsakaJapan

Personalised recommendations