Annals of Nuclear Medicine

, Volume 21, Issue 3, pp 175–183 | Cite as

Respiratory lung motion analysis using a nonlinear motion correction technique for respiratory-gated lung perfusion SPECT images

  • Hidenori UeEmail author
  • Hideaki Haneishi
  • Hideyuki Iwanaga
  • Kazuyoshi Suga
Original Articles



This study evaluated the respiratory motion of lungs using a nonlinear motion correction technique for respiratory-gated single photon emission computed tomography (SPECT) images.


The motion correction technique corrects the respiratory motion of the lungs nonlinearly between two-phase images obtained by respiratory-gated SPECT. The displacement vectors resulting from respiration can be computed at every location of the lungs. Respiratory lung motion analysis is carried out by calculating the mean value of the body axis component of the displacement vector in each of the 12 small regions into which the lungs were divided. In order to enable inter-patient comparison, the 12 mean values were normalized by the length of the lung region along the direction of the body axis.


This method was applied to 25 Technetium (Tc)-99m-macroaggregated albumin (MAA) perfusion SPECT images, and motion analysis results were compared with the diagnostic results. It was confirmed that the respiratory lung motion reflects the ventilation function. A statistically significant difference in the amount of the respiratory lung motion was observed between the obstructive pulmonary diseases and other conditions, based on an unpaired Student's t test (P < 0.0001).


A difference in the motion between normal lungs and lungs with a ventilation obstruction was detected by the proposed method. This method is effective for evaluating obstructive pulmonary diseases such as pulmonary emphysema and diffuse panbronchiolitis.

Key words

Respiratory-gated imaging Single photon emission computed tomography Motion correction Motion analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ketai, L, Hartshorne, M 2001Potential of computed tomography-SPECT and computed tomography-coincidence fusion images of the chestClin Nucl Med2643341PubMedCrossRefGoogle Scholar
  2. 2.
    Aquino, SL, Asmuth, JC, Moore, R, Weise, SB, Fischman, AJ 2002Improved image interpretation with registered thoracic CT and positron emission tomography data setsAm J Roentgenol Radium Ther Nucl Med17893944Google Scholar
  3. 3.
    Suga, K 2002Technical and analytical advances in pulmonary ventilation SPECT with xenon-133 gas and Tc-99m-TechnegasAnn Nucl Med1630310PubMedCrossRefGoogle Scholar
  4. 4.
    Suga, K, Kawakami, Y, Zaki, M, Yamashita, T, Matsumoto, T, Matsunaga, N 2004Pulmonary perfusion assessment with respiratory gatedTc-99m macroaggregated albumin SPECT: preliminary resultsNucl Med Commun2518393PubMedCrossRefGoogle Scholar
  5. 5.
    Ue, H, Haneishi, H, Iwanaga, H, Suga, K 2006Nonlinear motion correction of respiratory-gated lung SPECT imagesIEEE Trans Med Imaging2548695PubMedCrossRefGoogle Scholar
  6. 6.
    Klein GJ, Reutter BW, Huesman RH. 4D affine registration models for respiratory-gated PET. In: IEEE Nuclear Science symposium and Medical Imaging Conference, Lyon, France; 2000Google Scholar
  7. 7.
    Livieratos, L, Stegger, L, Bloomfield, PM, Schafers, K, Bailey, DL, Camici, PG 2005Rigid-body transformation of list-mode projection data for respiratory motion correction in cardiac PETPhys Med Biol50331322PubMedCrossRefGoogle Scholar
  8. 8.
    Dawood, M, Lang, N, Jiang, X, P Schafers, K 2006Lung motion correction on respiratory gated 3-D PET/CT imagesIEEE Trans Med Imaging2547685PubMedCrossRefGoogle Scholar
  9. 9.
    Sugiyama, Y 2004Respiratory medicineMedical ViewTokyo1707Google Scholar
  10. 10.
    Suga, K, Tsukuda, T, Awaya, H, Takano, K, Koike, S, Matsunaga, N,  et al. 1999Impaired respiratory mechanics in pulmonary emphysema: evaluation with dynamic breathing MRIJ Magn Reson Imaging1051020PubMedCrossRefGoogle Scholar
  11. 11.
    Iwasawa, T, Yoshiike, Y, Saito, K, Kagei, S, Gotoh, T, Matsubara, S 2000Paradoxical motion of the hemidiaphragm in patients with emphysemaJ Thorac Imaging151915PubMedCrossRefGoogle Scholar
  12. 12.
    Iwasawa, T, Kagei, S, Gotoh, T, Yoshiike, Y, Matsushita, K, Kurihara, H,  et al. 2002Magnetic resonance analysis of abnormal diaphragmatic motion in patients with emphysemaEur Respir J1922531PubMedCrossRefGoogle Scholar
  13. 13.
    Gonzalez, RC, Woods, RE 1993Digital image processing, chap. 7Addison-WesleyBostonGoogle Scholar
  14. 14.
    Davis, MH, Khotanzad, A, Flamig, DP, Harms, SE 1997A physics-based coordinate transformation for 3-D image matchingIEEE Trans Med Imaging1631728PubMedCrossRefGoogle Scholar
  15. 15.
    Bookstein, FL 1989Principal warps: thin-plate splines and the decomposition of deformationsIEEE Trans Pattern Anal Mach Intell1156785CrossRefGoogle Scholar
  16. 16.
    Brand, L 1957Vector analysis, chap. 1WileyNew YorkGoogle Scholar
  17. 17.
    Press, WH, Flannery, BP, Teukolsky, SA, Vetterling, WT 1993Numerical recipes in C. The art of scientific computing, chap. 102nd edCambridge University PressCambridgeGoogle Scholar
  18. 18.
    Segars WP. Development of a new dynamic NURBS-based cardiac-torso (NCAT) phantom. Ph D dissertation, The University of North Carolina; 2001Google Scholar
  19. 19.
    Ganong, WF 2001Review of medical physiology, chap. 34McGraw-HillNew YorkGoogle Scholar
  20. 20.
    Mori, K 1999The integrated basis of respiratory medicine, chap. 2BunkodoTokyoGoogle Scholar

Copyright information

© The Japanese Society of Nuclear Medicine 2007

Authors and Affiliations

  • Hidenori Ue
    • 1
    Email author
  • Hideaki Haneishi
    • 1
    • 2
  • Hideyuki Iwanaga
    • 3
  • Kazuyoshi Suga
    • 3
  1. 1.Haneishi LaboratoryGraduate School of Science and Technology, Chiba UniversityChibaJapan
  2. 2.Research Center for Frontier Medical EngineeringChiba UniversityChibaJapan
  3. 3.Department of RadiologyYamaguchi UniversityYamaguchiJapan

Personalised recommendations