Advertisement

Earth Science Informatics

, Volume 11, Issue 4, pp 545–552 | Cite as

Mapping red edge-based vegetation health indicators using Landsat TM data for Australian native vegetation cover

  • Ali Shamsoddini
  • Simitkumar Raval
Research Article

Abstract

The usefulness of red edge bands, and vegetation indices based on red edge bands, for vegetation health monitoring has already been demonstrated. There are some satellites such as WorldView-2 and Sentinel-2 acquiring images in red edge band data; while, the former data can be expensive and often lack consistent global coverage, the latter does not have a long term archive and consequently cannot be used for a long term time series analysis. This study tests the ability to predict red edge band and red edge-based vegetation indices through freely available Landsat Thematic Mapper data for an Australian Eucalyptus-dominated vegetation cover within and around a mine site. Two modelling strategies including multiple-linear regression as a linear approach and random forests as a non-linear approach were used. The results showed that it is possible to generate red edge derivatives using the Landsat Thematic Mapper data with less than 10% error using both linear and non-linear methods; however, the linear method resulted in higher estimation accuracies than non-linear methods.

Keywords

Remote sensing Red edge Vegetation health Random forest 

Notes

Acknowledgements

The environment and community manager of the studied mine site is acknowledge for providing the vegetation community map.

References

  1. Barry KM, Stone C, Mohammed CL (2008) Crown-scale evaluation of spectral indices for defoliated and discoloured eucalypts. Int J Remote Sens 29(1):47–69.  https://doi.org/10.1080/01431160701281056 CrossRefGoogle Scholar
  2. Beyer HL (2004). Hawth’s analysis tools for ArcGISGoogle Scholar
  3. Breiman L (2001) Random forests. Mach Learn 45(1):5–32.  https://doi.org/10.1023/A:1010933404324 CrossRefGoogle Scholar
  4. Cawley GC, Talbot NLC (2010) On over-fitting in model selection and subsequent selection bias in performance evaluaton. J Mach Learn Res 11(2010):2079–2107Google Scholar
  5. Cho MA, Skidmore AK, Atzberger C (2008) Towards red-edge positions less sensitive to canopy biophysical parameters for leaf chlorophyll estimation using properties optique spectrales des feuilles (PROSPECT) and scattering by arbitrarily inclined leaves (SAILH) simulated data. Int J Remote Sens 29(8):2241–2255.  https://doi.org/10.1080/01431160701395328 CrossRefGoogle Scholar
  6. Cho MA, Debba P, Mutanga O, Dudeni-Tlhone N, Magadla T, Khuluse SA (2012) Potential utility of the spectral red-edge region of SumbandilaSat imagery for assessing indigenous forest structure and health. Int J Appl Earth Obs Geoinf 16:85–93.  https://doi.org/10.1016/j.jag.2011.12.005 CrossRefGoogle Scholar
  7. Coops NC, Stone C, Culvenor DS, Chisholm L (2004) Assessment of crown condition in eucalypt vegetation by remotely sensed optical indices. J Environ Qual 33(3):956–964.  https://doi.org/10.2134/jeq2004.0956 CrossRefGoogle Scholar
  8. Curran PJ (1994) Imaging spectrometry. Prog Phys Geogr 18(2):247–266.  https://doi.org/10.1177/030913339401800204 CrossRefGoogle Scholar
  9. Curran PJ, Dungan JL, Gholz HL (1990) Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiol 7(1-2-3-4):33–48CrossRefGoogle Scholar
  10. Datta S, Pihur V (2010) Feature selection and machine learning with mass spectrometry data. Bioinformatics Methods in Clinical Research 593:205–229.  https://doi.org/10.1007/978-1-60327-194-3_11 CrossRefGoogle Scholar
  11. Gamon JA, Surfus JS (1999) Assessing leaf pigment content and activity with a reflectometer. New Phytol 143(1):105–117.  https://doi.org/10.1046/j.1469-8137.1999.00424.x CrossRefGoogle Scholar
  12. Gitelson AA, Merzlyak MN, Chivkunova OB (2001) Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem Photobiol 74(1):38–45.  https://doi.org/10.1562/0031-8655(2001)074<0038:OPANEO>2.0.CO;2 CrossRefGoogle Scholar
  13. Haboudane D, Miller JR, Pattey E, Zarco-Tejada PJ, Strachan IB (2004) Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens Environ 90(3):337–352.  https://doi.org/10.1016/j.rse.2003.12.013 CrossRefGoogle Scholar
  14. Hansen MC, Loveland TR (2012) A review of large area monitoring of land cover change using Landsat data. Remote Sens Environ 122(2012):66–74.  https://doi.org/10.1016/j.rse.2011.08.024 CrossRefGoogle Scholar
  15. Horton BM, Close DC, Wardlaw TJ, Davidson NJ (2011) Crown condition assessment: an accurate, precise and efficient method with broad applicability to Eucalyptus. Austral Ecol 36(6):709–721.  https://doi.org/10.1111/j.1442-9993.2010.02206.x CrossRefGoogle Scholar
  16. Huete AR, Liu HQ, Batchily K, van Leeuwen W (1997) A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens Environ 59(3):440–451.  https://doi.org/10.1016/S0034-4257(96)00112-5 CrossRefGoogle Scholar
  17. Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83(1–2):195–213.  https://doi.org/10.1016/S0034-4257(02)00096-2 CrossRefGoogle Scholar
  18. Johansen K, Phinn S (2004) “Mapping indicators of riparian vegetation health using IKONOS and Landsat-7 ETM+ image data in Australian tropical savannas.” Paper presented at Geoscience and Remote Sensing Symposium, IGARSS '04. Proceedings.  https://doi.org/10.1109/IGARSS.2004.1370611
  19. Johansen K, Phinn S (2006) Mapping structural parameters and species composition of riparian vegetation using IKONOS and Landsat ETM+ data in Australian tropical savannahs. Photogramm Eng Remote Sens 72(1):71–80.  https://doi.org/10.14358/PERS.72.1.71 CrossRefGoogle Scholar
  20. Jordan CF (1969) Derivation of leaf-area index from quality of light on the forest floor. Ecology 50(4):663–666.  https://doi.org/10.2307/1936256 CrossRefGoogle Scholar
  21. Kennedy AC, Smith KL (1995) Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170(1):75–86.  https://doi.org/10.1007/BF02183056 CrossRefGoogle Scholar
  22. Lambin EF, Ehrlich D (1997) Land-cover changes in sub-saharan Africa (1982–1991): application of a change index based on remotely sensed surface temperature and vegetation indices at a continental scale. Remote Sens Environ 61(2):181–200.  https://doi.org/10.1016/S0034-4257(97)00001-1 CrossRefGoogle Scholar
  23. Landgrebe D (1997) On information extraction principles for hyperspectral data: a white paper. Technical report, school electrical and computer engineering, Purdue University, West Lafayette, IN 47907-1285. https://engineering.purdue.edu/~landgreb/whitepaper.pdf
  24. Liao M, Xie XM (2007) Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area. Ecotoxicol Environ Saf 66(2):217–223.  https://doi.org/10.1016/j.ecoenv.2005.12.013 CrossRefGoogle Scholar
  25. Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148(1–2):4–14.  https://doi.org/10.1016/S0176-1617(96)80287-2 CrossRefGoogle Scholar
  26. Lymburner L, Beggs PJ, Jacobson CR (2000) Estimation of canopy-average surface-specific leaf area using Landsat TM data. Photogramm Eng Remote Sens 66(2):183–192Google Scholar
  27. Maccioni A, Agati G, Mazzinghi P (2001) New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. J Photochem Photobiol B Biol 61(1):52–61.  https://doi.org/10.1016/S1011-1344(01)00145-2 CrossRefGoogle Scholar
  28. Maimon O, Rokach L (eds) (2005) The data mining and knowledge r handbook. Springer, HeidelbergGoogle Scholar
  29. Malahlela O, Cho MA, Mutanga O (2014) Mapping canopy gaps in an indigenous subtropical coastal forest using high-resolution worldview-2 data. Int J Remote Sens 35(17):6397–6417.  https://doi.org/10.1080/01431161.2014.954061 CrossRefGoogle Scholar
  30. Mutanga O, Adam E, Cho MA (2012) High density biomass estimation for wetland vegetation using worldview-2 imagery and random forest regression algorithm. Int J Appl Earth Obs Geoinf 18:399–406.  https://doi.org/10.1016/j.jag.2012.03.012 CrossRefGoogle Scholar
  31. Norušis MJ (2006) SPSS 14.0 guide to data analysis, Prentice Hall, Upper Saddle River, NJGoogle Scholar
  32. Raval S, Shamsoddini A (2014) A monitoring framework for land use around kaolin mining areas through Landsat TM images. Earth Sci Inf 7:153–163.  https://doi.org/10.1007/s12145-014-0169-z CrossRefGoogle Scholar
  33. Raval S, Merton RN, Laurence D (2013) Satellite based mine rehabilitation monitoring using worldview-2 imagery. Institution of Mining and Metallurgy Transactions. Section A: Mining Technology 122(4):200–207CrossRefGoogle Scholar
  34. Raval S, Sarver E, Shamsoddini A, Zipper C, Donovan P, Evans D, Chu H (2014) Satellite remote sensing-based estimates of biomass production on reclaimed coal mines. Min Eng 66(4):76–82Google Scholar
  35. Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great Plains with ERTS. Paper presented at the Proceedings of the Third ERTS Symposium 1:309–317Google Scholar
  36. Shamsoddini A, Trinder JC (2012) Neural networks fusion for regression problems. International Journal of Machine Learning and Computing 2(4):511–516.  https://doi.org/10.7763/IJMLC.2012.V2.178 CrossRefGoogle Scholar
  37. Shamsoddini A, Trinder JC, Turner R (2011) Quantization of Pinus forest biophysical parameters using WorldView-2. In Proc Latin America Geospatial Forum 1:11Google Scholar
  38. Shamsoddini A, Trinder JC, Turner R (2013a) Pine plantation structure mapping using WorldView-2 multispectral image. Int J Remote Sens 34(11):3986–4007.  https://doi.org/10.1080/01431161.2013.772308 CrossRefGoogle Scholar
  39. Shamsoddini A, Trinder JC, Turner R (2013b) Improving lidar-based forest structure mapping with crown-level pit removal. J Spat Sci 58(1):29–51.  https://doi.org/10.1080/14498596.2012.759092 CrossRefGoogle Scholar
  40. Shamsoddini A, Trinder JC, Turner R (2013c) Non-linear methods for inferring lidar metrics using SPOT-5 textural data. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences 1(2):259–264.  https://doi.org/10.5194/isprsannals-II-5-W2-259-2013 CrossRefGoogle Scholar
  41. Shamsoddini A, Raval S, Taplin R (2014) Spectroscopic analysis of soil metal contamination around a derelict mine site in the Blue Mountains, Australia. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences II.7:75–79.  https://doi.org/10.5194/isprsannals-II-7-75-2014 CrossRefGoogle Scholar
  42. Shamsoddini A, Trinder JC, Turner R (2015) Paired-data fusion for improved estimation of pine plantation structure. Int J Remote Sens 36(8):1995–2009.  https://doi.org/10.1080/01431161.2015.1024896 CrossRefGoogle Scholar
  43. Somers B, Verbesselt J, Ampe E, Sims N, Verstraeten WW, Coppin P (2010) Spectral mixture analysis to monitor defoliation in mixed-aged Eucalyptus globulus Labill plantations in southern Australia using Landsat 5-TM and EO-1 Hyperion data. Int J Appl Earth Obs Geoinf 12(4):270–277.  https://doi.org/10.1016/j.jag.2010.03.005 CrossRefGoogle Scholar
  44. Song C, Woodcock CE, Seto KC, Lenney MP, Macomber SA (2001) Classification and change detection using Landsat TM data: when and how to correct atmospheric effects? Remote Sens Environ 75(2):230–244.  https://doi.org/10.1016/S0034-4257(00)00169-3 CrossRefGoogle Scholar
  45. Svetnik V, Liaw A, Tong C, Wang T (2004) Application of Breiman’s random Forest to modeling structure-activity relationships of pharmaceutical molecules. In: ROLI F, Kittler J, Windeatt T (eds) Multiple classifier systems. Springer, Berlin HeidelbergGoogle Scholar
  46. Yamane T (1973) Statistics: An introductory analysis (3rd ed.), Harper & Row. New YorkGoogle Scholar
  47. Zarco-Tejada PJ, Miller JR, Harron J, Hu B, Noland TL, Goel N, Mohammed GH, Sampson P (2004) Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies. Remote Sens Environ 89(2):189–199.  https://doi.org/10.1016/j.rse.2002.06.002 CrossRefGoogle Scholar
  48. Zhu Y, Liu K, Liu L, Myint SW, Wang S, Liu H, He Z (2017) Exploring the potential of WorldView-2 red-edge band-based vegetation indices for estimation of mangrove leaf area index with machine learning algorithms. Remote Sens 9(10):1–20.  https://doi.org/10.3390/rs9101060 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Remote Sensing and GISTarbiat Modares UniversityTehranIran
  2. 2.Australian Centre for Sustainable Mining Practices, School of Mining EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations