Advertisement

Earth Science Informatics

, Volume 11, Issue 3, pp 341–357 | Cite as

Capability of L-band SAR data in mapping of sedimentary formations of the Marmul region, Sultanate of Oman

  • Sankaran Rajendran
  • Sobhi Nasir
Research Article
  • 82 Downloads

Abstract

This study demonstrates the capability of the longer wavelength (L-band) and fine mode images of the Phased Array type L-band Synthetic Aperture Radar (PALSAR), and the optical spectral bands of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) to map sedimentary formations and structures of the Marmul region, Central Oman. Results of study shows that the principal components image of the visible and near infrared–shortwave infrared (VNIR-SWIR) spectral bands of the ASTER have potential to discriminate the occurrence and distribution of marine and Quaternary sedimentary formations of the region. The color composite image developed using PALSAR data (R:HH + HV; G:HH; B:HV) has capable to differentiate the occurrence of the sedimentary formations and structures of the region. We developed ratios images by summing the HH intensity as a numerator and the HV intensity as a denominator (R:HH+(HH + HV)/HV, G:HH + HV, B:HH/HV), and by summing the HV intensity as a numerator and the HH intensity as a denominator (R:HV+(HH + HV)/HH, G:HV + HH, B:HV/HH) to study better the sedimentary formations and structures. The images discriminated well the occurrence of the limestones and shale formations of the marine deposits, the wadi alluvium of the Quaternary deposits and the manmade building structures of the region. We studied the minerals of the sedimentary formations using VNIR-SWIR spectral bands of the ASTER by spectral angle mapper (SAM) image processing method. The study showed presence of carbonates, silicates and OH bearing aluminosilicate minerals in the formations. The image interpretations are verified in the field and confirmed by the laboratory studies.

Keywords

PALSAR Aster Spectral angle mapper Sedimentary formations Sultanate of Oman 

Notes

Acknowledgements

The author is thankful to the ERSDAC, Japan Space Systems for providing the PALSAR data (Order No.: SDPR201404230016). The author is also thankful to the NASA Land Processes Distributed Active Archive Center User Services, USGS Earth Resources Observation and Science (EROS) Center (https://LPDAAC.usgs.gov) for providing the ASTER data. The guidance extended by PALSAR GDS User Service for processing data is thankfully acknowledged. This study is partially funded by the SQU Internal grant IG/SCI/ETHS/14/02 and HM grant no SR/DVC/ESRC/15/01. The author is thankful to Mr. Yaqoob, Research Assistant of the project for his support during the field and laboratory studies. The XRD analyses are provided by CAARU, SQU and Mr. Saif Amer Al-Maamari is thanked for his discussion. The transport facility extended by SQU to carry out field check and collect samples in the desert region is thankfully acknowledged. The authors are very much thankful to the Editor and the anonymous reviewers of the journal for their valuable reviews and providing constructive comments and suggestions that have helped to present the work lucidly.

References

  1. Abdelsalam M, Robinson GC, El-Baz F, Stern R (2000) Application of orbital imaging radar for geologic studies in arid regions: the Saharan testimony. Photogramm Eng Remote Sens 66:717–726Google Scholar
  2. Abrams MJ, Rothery DA, Pontual A (1988) Mapping in the Oman ophiolite using enhanced Landsat thematic mapper images. Tectonophysics 151(1-4):387–401.  https://doi.org/10.1016/0040-1951(88)90254-5 CrossRefGoogle Scholar
  3. Aimaiti Y, Kasimu A, Jing G (2016) Urban landscape extraction and analysis based on optical and microwave ALOS satellite data. Earth Sci Inf 9(4):425–435.  https://doi.org/10.1007/s12145-016-0264-4 CrossRefGoogle Scholar
  4. Berlin GL, Tarabzouni MA, AI-Naser A, Sheikha KM, Larson RW (1986) SIR-B subsurface imaging of a sand-buried landscape: A1 Labbah plateau Saudi Arabia. IEEE Trans Geosci Remote Sens GE-24(4):595–602.  https://doi.org/10.1109/TGRS.1986.289676 CrossRefGoogle Scholar
  5. Breed CS, Sehaber GG, McCauley JF (1983) Substance geology of the Western Desert in Egypt and Sudan revealed by shuttle imaging radar (SIR-A). Spaceborne Imaging Radar Symposium (17–20 Jan 1983) JPL Pub 83–11 Jet Propulsion Laboratory Pasadena CA pp 10–12Google Scholar
  6. Campbell JB (2007) Introduction to remote sensing. 4th Edition, The Guilford Press, NewYorkGoogle Scholar
  7. Chevrel S, Berthiaux A, Platel JP, Roger J (1992) Geological Map of Marmul. Sheet NE 40–05 (Scale 1:250,000), Directorate General of Minerals, Ministry of Petroleum and Minerals, Sultanate of OmanGoogle Scholar
  8. Crósta AP, Filho CRDS (2003) Searching for gold with ASTER. Earth Observation Magazine 12(5):38–41Google Scholar
  9. Di Tommaso I, Rubinstein N (2007) Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit Argentina. Ore Geol Rev 32(1-2):275–290.  https://doi.org/10.1016/j.oregeorev.2006.05.004 CrossRefGoogle Scholar
  10. Earth Remote Sensing Data Analysis Center (2006) Overview of the ALOS, PALSAR User's Guide. PALSAR Data Service Section, Technical Department II, Earth Remote Sensing Data Analysis Center (ERSDAC), Tokyo, pp 1-15Google Scholar
  11. Elachi CL, Both E, Sehaber GG (1984) Spaceborne radar subsurface imaging in hyperarid regions. IEEE Trans Geosci Remote Sens GE-22:383-388Google Scholar
  12. Evans DL, Farr TG, Ford JP, Thompson TW, Werner CL (1986) Multipolarization radar images for geologic mapping and vegetation discrimination. IEEE Trans Geosci Remote Sens 24(2):246–257CrossRefGoogle Scholar
  13. Gabr S, Ghulam A, Kusky T (2010) Detecting areas of high-potential gold mineralization using ASTER data. Ore Geol Rev 38(1-2):59–69.  https://doi.org/10.1016/j.oregeorev.2010.05.007 CrossRefGoogle Scholar
  14. Genchi SA, Vitale AJ, Perillo GME, Piccolo MC (2016) Geomorphometric assessment of drainage systems in a semi-arid region of Argentina using geospatial tools and multivariate statistics. Earth Sci Inf 9(3):309–324.  https://doi.org/10.1007/s12145-016-0258-2 CrossRefGoogle Scholar
  15. Habib A, Akdim N, El Ghandour F, Labbassi K, Khoshelham K, Menenti M (2017) Extraction and accuracy assessment of high-resolution DEM and derived orthoimages from ALOS-PRISM data over Sahel-Doukkala (Morocco). Earth Sci Inf 10(2):197–217.  https://doi.org/10.1007/s12145-017-0287-5 CrossRefGoogle Scholar
  16. Hecker CA, van der Meijde M, van der Werff HMA, van der Meer FD (2008) Assessing the influence of reference spectra on synthetic SAM classification results. IEEE Trans Geosci Remote Sens 46(12):4162–4172.  https://doi.org/10.1109/TGRS.2008.2001035 CrossRefGoogle Scholar
  17. Hunt GR, Salisbury JW (1970) Visible and near infrared spectra of minerals and rocks: I silicate minerals. Mod Geol 1:283–300Google Scholar
  18. Hunt GR, Salisbury JW, Lenhoff CJ (1974) Visible and near-infrared spectra of minerals and rocks IX basic and ultrabasic igneous rocks. Mod Geol 5:15–22Google Scholar
  19. Iwasaki A, Fujisada H, Akao H, Shindou O, Akagi S (2002) Enhancement of spectral separation performance for ASTER/SWIR. Proc SPIE 4486:42–50CrossRefGoogle Scholar
  20. Kruse FA, Lefkoff AB, Boardman JB, Heidebreicht KB, Shapiro AT, Barloon PJ (1993) The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sens Environ 44(2-3):145–163.  https://doi.org/10.1016/0034-4257(93)90013-N CrossRefGoogle Scholar
  21. Kruse FA, Boardman JW, Hunnington JF (2003) Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans Geosci Remote Sens 41(6):1388–1400.  https://doi.org/10.1109/TGRS.2003.812908 CrossRefGoogle Scholar
  22. Kusky TM, Ramadan TM (2002) Structural controls on Neoproterozoic mineralization in the south Eastern Desert Egypt: an integrated field Landsat TM and SIR-C/X SAR approach. J Afr Earth Sci 35(1):107–121.  https://doi.org/10.1016/S0899-5362(02)00029-5 CrossRefGoogle Scholar
  23. Kusky TM, Robinson C, El-Baz F (2005) Tertiary faulting and uplift in the northern Oman Hajar Mountains. J Geol Soc 162(5):871–888.  https://doi.org/10.1144/0016-764904-122 CrossRefGoogle Scholar
  24. Loughlin WP (1991) Principal component analysis for alteration mapping. Photogramm Eng Remote Sens 57:1163–1169Google Scholar
  25. Manavalan R (2017) SAR image analysis techniques for flood area mapping literature survey. Earth Sci Inf 10(1):1–14.  https://doi.org/10.1007/s12145-016-0274-2 CrossRefGoogle Scholar
  26. Marino A (2012) A new target detector based on geometrical perturbation filters for Polarimetric Synthetic Aperture Radar (POL-SAR). Springer Theses Springer-Verlag Berlin Hiedelberg doi:  https://doi.org/10.1007/978-3-642-27163-2_2
  27. McCauley JF, Schaher GG, Breed CS (1982) Subsurface valleys and geoarehaeology of Egypt and Sudan revealed by radar. Science 218(4576):1004–1020.  https://doi.org/10.1126/science.218.4576.1004 CrossRefGoogle Scholar
  28. McCauley JF, Breed CS, Schaber CG, Haynes CV, McHugh WP, Issawi B, El Kilani A (1986) Paleo-drainages of the eastern Sahara—the radar rivers revisited (SIR-A/B implications for a mid-tertiary trans African drainage system). IEEE Trans Geosci Remote Sens 24(4):624–648CrossRefGoogle Scholar
  29. Nikolakopoulos KG, Choussiafis C, Karathanassi V (2015) Assessing the quality of DSM from ALOS optical and radar data for automatic drainage extraction. Earth Sci Inform 8(2):293-307Google Scholar
  30. Ninomiya Y, Fu B, Cudahy TJ (2005) Detecting lithology with advanced space borne thermal emission and reflection radiometer (ASTER) multispectral thermal infrared radiance-at-sensor data. Remote Sens Environ 99(1-2):127–139.  https://doi.org/10.1016/j.rse.2005.06.009 CrossRefGoogle Scholar
  31. Paillou P, Grandjean G, Baghdadi N, Heggy E, August-Bernex T, Achache J (2003) Subsurface imaging in south-Central Egypt using low-frequency radar: Bir Safsaf revisited. IEEE Trans Geosci Remote Sens 41(7):1672–1684.  https://doi.org/10.1109/TGRS.2003.813275 CrossRefGoogle Scholar
  32. Pal SK, Majumdar TJ, Bhattacharya AK (2007) ERS-2 SAR and IRS-1C LISS III data fusion: a PCA approach to improve remote sensing based geological interpretation. ISPRS J Photogramm Remote Sens 61(5):281–297.  https://doi.org/10.1016/j.isprsjprs.2006.10.001 CrossRefGoogle Scholar
  33. Platel JP, Berthiaux A, Chevrel S, Roger J, Le Metour J, Wursten F (1992) Geological Map of Salalah. Sheet NE 40–09 (Scale 1:250,000), Directorate General of Minerals, Ministry of Petroleum and Minerals, Sultanate of OmanGoogle Scholar
  34. Pour AB, Hashim M (2014a) Structural geology mapping using PALSAR data in the Bau gold mining district, Sarawak, Malaysia. Adv Space Res 54(4):644-654Google Scholar
  35. Pour AB, Hashim M (2014b) Integrating PALSAR and ASTER data for mineral deposits exploration in tropical environments: a case study from Central Belt peninsular Malaysia. Int J Image Data Fusion 6(2):170–188CrossRefGoogle Scholar
  36. Pour BA, Hashim M (2015) Structural mapping using PALSAR data in the central Gold Belt peninsular Malaysia. Ore Geol Rev 64:13–22.  https://doi.org/10.1016/j.oregeorev.2014.06.011 CrossRefGoogle Scholar
  37. Pour BA, Hashim M, Marghany M (2014) Exploration of gold mineralization in a tropical region using earth Observing-1 (EO1) and JERS-1 SAR data: a case study from Bau gold field Sarawak Malaysia. Arab J Geosci 7(6):2393–2406.  https://doi.org/10.1007/s12517-013-0969-3 CrossRefGoogle Scholar
  38. Rahman MM, Sumantyo JTS, Sadek MF (2010) Microwave and optical image fusion for surface and sub-surface feature mapping in eastern Sahara. Int J Remote Sens 31(20):5465–5480.  https://doi.org/10.1080/01431160903302999 CrossRefGoogle Scholar
  39. Rajendran S, Nasir S (2014a) ASTER spectral sensitivity of carbonate rocks – study in Sultanate of Oman. Adv Space Res 53(4):656–673.  https://doi.org/10.1016/j.asr.2013.11.047 CrossRefGoogle Scholar
  40. Rajendran S, Nasir S (2014b) ASTER mapping of limestone formations and study of caves springs and depressions in parts of Sultanate of Oman. Environ Earth Sci 71(1):133–146.  https://doi.org/10.1007/s12665-013-2419-7 CrossRefGoogle Scholar
  41. Rajendran S, Nasir S (2014c) Recognition of minerals using multispectral remote sensing data: a case study in Sultanate of Oman. SQU J Sci 19(2):37–52CrossRefGoogle Scholar
  42. Rajendran S, Nasir S (2014d) Hydrothermal altered serpentinized zone and a study of Ni-magnesioferrite–magnetite–awaruite occurrences in Wadi Hibi northern Oman Mountain: discrimination through ASTER mapping. Ore Geol Rev 62:211–226.  https://doi.org/10.1016/j.oregeorev.2014.03.016 CrossRefGoogle Scholar
  43. Rajendran S, Nasir S (2015a) Mapping of Moho and Moho transition zone (MTZ) in Samail ophiolites of Sultanate of Oman using remote sensing technique. Tectonophysics 657:63–80.  https://doi.org/10.1016/j.tecto.2015.06.023 CrossRefGoogle Scholar
  44. Rajendran S, Nasir S (2015b) Mapping of high-pressure metamorphics in the as Sifah region NE Oman using ASTER data. Adv Space Res 55(4):1134–1157.  https://doi.org/10.1016/j.asr.2014.11.026 CrossRefGoogle Scholar
  45. Rajendran S, Hersi OS, Al-Harthy AR, Al-Wardi M, El Ghali M, Al-Abri AH (2011a) Capability of advanced Spaceborne thermal emission and reflection radiometer (ASTER) on discrimination of carbonates and associated rocks and mineral identification of eastern mountain region (Saih Hatat window) of Sultanate of Oman. Carbonates Evaporites 26(4):351–364.  https://doi.org/10.1007/s13146-011-0071-4 CrossRefGoogle Scholar
  46. Rajendran S, Thirunavukkarasu A, Balamurugan B, Shankar K (2011b) Discrimination of iron ore deposits of granulite terrain of southern peninsular India using ASTER data. J Asian Earth Sci 41(1):99–106.  https://doi.org/10.1016/j.jseaes.2011.01.004 CrossRefGoogle Scholar
  47. Rajendran S, Al-Khirbash S, Pracejus B, Nasir S, Al-Abri AH, Kusky TM, Ghulam A (2012) ASTER detection of chromite bearing mineralized zones in Semail ophiolite massifs of the northern Oman mountain: exploration strategy. Ore Geol Rev 44:121–135.  https://doi.org/10.1016/j.oregeorev.2011.09.010 CrossRefGoogle Scholar
  48. Rajendran S, Nasir S, Kusky TM, Ghulam A, Gabr S, El Ghali M (2013) Detection of hydrothermal mineralized zones associated with Listwaenites rocks in the Central Oman using ASTER data. Ore Geol Rev 53:470–488.  https://doi.org/10.1016/j.oregeorev.2013.02.008 CrossRefGoogle Scholar
  49. Rajendran S, Nasir S, Kusky TM, Al-Khirbash S (2014) Remote sensing based approach for mapping of CO2 sequestered regions in Semail ophiolite massifs of the Sultanate of Oman. Earth Sci Rev 135:122–140.  https://doi.org/10.1016/j.earscirev.2014.04.004 CrossRefGoogle Scholar
  50. Ramadan TM, Abdelsalam MG, Stern R (2001) Mapping gold-bearing massive sulphide deposits in the Neoproterozoic Allaqi suture Southeast Egypt with Landsat TM and SIR-C/X SAR images. Photogrammetry engineering and. Remote Sens 67(4):491–497Google Scholar
  51. Richards JA, Xiuping J (1998) Remote Sensing Digital Image Analysis. Third Ed Springer Berlin 363Google Scholar
  52. Robinet J, Razin R, Serra-Kiel J, Gallardo-Garcia A, Leroy S, Roger J, Grelaud C (2013) The Paleogene pre-rift to syn-rift succession in the Dhofar margin (north eastern gulf of Aden): stratigraphy and depositional environments. Tectonophysics 607:1–16.  https://doi.org/10.1016/j.tecto.2013.04.017 CrossRefGoogle Scholar
  53. Robinson CA, El-Baza F, Kusky TM, Mainguetc M, Dumayc F, Al Suleimanid Z, Al Marjeby A (2007) Role of fluvial and structural processes in the formation of the Wahiba Sands Oman: a remote sensing perspective. J Arid Environ 69(4):676–694.  https://doi.org/10.1016/j.jaridenv.2006.11.015 CrossRefGoogle Scholar
  54. Rokos D, Argialas D, Mavrantza R, St-Seymour K, Vamvoukakis C, Kouli M, Lamera S, Paraskevas H, Karfakis I, Dene G (2000) Structural mapping and analysis for a preliminary investigation of possible gold mineralization by using remote sensing and geochemical techniques in a GIS environment: study area: island of Lesvos Aegean Sea Hellas. Nat Resour Res 9(4):277–293.  https://doi.org/10.1023/A:1011505326148 CrossRefGoogle Scholar
  55. Rowan LC, Mars JC (2003) Lithologic mapping in the mountain pass area California using advanced space borne thermal emission and reflection radiometer (ASTER) data. Remote Sens Environ 84(3):350–366.  https://doi.org/10.1016/S0034-4257(02)00127-X CrossRefGoogle Scholar
  56. Rowan LC, Hook J, Abrams MJ, Mars JC (2003) Mapping hydrothermally altered rocks at cuprite Nevada using the advanced space borne thermal emission and reflection radiometer (ASTER) a new satellite-imaging system. Econ Geol Bull Soc Econ Geol 98(5):1019–1027.  https://doi.org/10.2113/gsecongeo.98.5.1019 CrossRefGoogle Scholar
  57. Schaber GG, Breed CS (1999) The importance of SAR wavelength in penetrating blow sand in northern Arizona. Remote Sens Environ 69(2):87–104.  https://doi.org/10.1016/S0034-4257(99)00013-9 CrossRefGoogle Scholar
  58. Schaber GG, McCauley JF, Breed CS, Olhoeft GR (1986) Shuttle imaging radar: physical controls on signal penetration and subsurface scattering in the eastern Sahara. IEEE Trans Geosci Remote Sens 24(4):603–623CrossRefGoogle Scholar
  59. Schaber GG, McCauley JF, Breed CS (1997) The use of multi frequency and polarimetric SIR-C/S-SAR data in geologic studies of Bir Safsaf Egypt. Remote Sens Environ 59(2):337–363.  https://doi.org/10.1016/S0034-4257(96)00143-5 CrossRefGoogle Scholar
  60. Singh G, Venkataraman G, Yamaguchi Y (2014) Capability assessment of fully Polarimetric ALOS–PALSAR data for discriminating wet snow from other scattering types in mountainous regions. IEEE Trans Geosci Remote Sens 52(2):1177–1196.  https://doi.org/10.1109/TGRS.2013.2248369 CrossRefGoogle Scholar
  61. Sultan MR, Arvidson E, Sturchio NC, Guinnes EA (1987) Lithologic mapping in arid regions with Landsat TM data: Meatiq dome Egypt. Geol Soc Am Bull 99(6):748–762.  https://doi.org/10.1130/0016-7606(1987)99<748:LMIARW>2.0.CO;2 CrossRefGoogle Scholar
  62. Thurmond AK, Abdelsalam MG, Thurmond JB (2006) Optical-radar-DEM remote sensing data integration for geological mapping in the afar depression Ethiopia. J Afr Earth Sci 44(2):119–134.  https://doi.org/10.1016/j.jafrearsci.2005.10.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Earth Science Research CentreSultan Qaboos UniversityMuscatOman

Personalised recommendations