Skip to main content

Advertisement

Log in

Geomorphometric assessment of drainage systems in a semi-arid region of Argentina using geospatial tools and multivariate statistics

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

In semi-arid environments there is often a lack of data on hydrological variables that limits the ability to understand key hydrological processes. In response to this need, geomorphometric analysis is a quantitative approach that has proven to be useful. This work aims to assess and classify 35 exorheic drainage basins located in a semi-arid area of Argentina (Northeastern Patagonia) according to their geomorphometric properties by using GIS technology and principal component (PCA) and cluster analysis (CA) multivariate techniques. In addition, an assessment of automated drainage network extraction accuracy was performed by comparing it with the actual drainage network. The study showed that it was possible to derive automated drainage networks with errors lower than 6 %. By comparing both PCA and CA, it was found that the former allows a good understanding of the clustering of basins from the CA. All basins were clustered into four groups following a significant spatial continuity. This type of study gives the basis for regional-scale analysis, and provides further information for subsequent modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al Rawashdeh SB (2012) Assessment of extraction drainage pattern from topographic maps based on photogrammetry. Arab J Geosci 6(12):4873–4880. doi:10.1007/s12517-012-0718-z

    Article  Google Scholar 

  • Ali GA, Roy AG, Turme MC, Courchesne F (2010) Multivariate analysis as a tool to infer hydrologic response types and controlling variables in a humid temperate catchment. Hydrol Process 24:2912–2923. doi:10.1002/hyp.7705

    Article  Google Scholar 

  • Bali R, Agarwal KK, Nawaz Ali S, Rastogi SK, Krishna K (2011) Drainage morphometry of Himalayan Glacio-fluvial basin, India: hydrologic and neotectonic implications. Environ Earth Sci 66:1163–1174. doi:10.1007/s12665-011-1324-1

    Article  Google Scholar 

  • Busteros A, Giacosa R, Lema H, Zubia M (1998) Descripción de la Hoja Geológica Hoja 4166-IV- Sierra Grande, Provincia de Río Negro. SEGEMAR, Buenos Aires

    Google Scholar 

  • Cabrera A (1976) Regiones fitogeográficas argentinas. In: Kugler W (ed) Enciclopedia Argentina de Agricultura y Jardinería, 2nd edn. Acme, Buenos Aires, pp 1–85

    Google Scholar 

  • Charon JE (1974) Hydrogeological applications of ERTS satellite imagery. In: Proc UN/FAO regional seminar on remote sensing of earth resources and environment. Commonwealth Science Council, Cairo, pp 439–456

    Google Scholar 

  • Chen C, Yu F (2011) Morphometric analysis of debris flows and their source areas using GIS. Geomorphology 29(3-4):387–397. doi:10.1016/j.geomorph.2011.03.002

    Article  Google Scholar 

  • Coates DR (1958) Quantitative geomorphology of small drainage basins of southern Indiana (Tech. Rep. 10). Columbia University, New York

    Google Scholar 

  • Dombrádi E, Timár G, Bada G, Cloetingh S, Horváth F (2007) Fractal dimension estimations of drainage network in the Carpathian–Pannonian system. Global Planet Change 58:197–213. doi:10.1016/j.gloplacha.2007.02.011

    Article  Google Scholar 

  • Ebisemiju FS (1976) Morphometric work with Nigerian topographical maps. Nigerian Geogr J 19:65–77

    Google Scholar 

  • Ebisemiju FS (1979) An objective criterion for the selection of representative basins. Water Resour Res 15(1):148–158. doi:10.1029/WR015i001p00148

    Article  Google Scholar 

  • Franchi M, Remesal M, Ardolino A (1998) Descripción de la Hoja Geológica Hoja 4166-III- Cona Niyeu, Provincia de Río Negro. SEGEMAR, Buenos Aires

    Google Scholar 

  • Gatziolis D, Fried JS (2004) Adding Gaussian noise to inaccurate digital elevation models improves spatial fidelity of derived drainage networks. Water Resour Res 40, W02508. doi:10.1029/2002WR001735

    Article  Google Scholar 

  • Genchi SA (2012) Geomorfología regional y dinámica costera del sector Occidental del golfo San Matías (Unpublished doctoral thesis). Universidad Nacional del Sur, Argentina

  • Genchi SA, Carbone ME, Piccolo MC, Perillo GME (2011) Clasificación geomorfológica automatizada en terrazas del noreste del Macizo Norpatagónico, Argentina. GeoFocus 11:182–206

    Google Scholar 

  • Ghimire M (2014) Multivariate morphological characteristics and classification of first-order basins in the Siwaliks, Nepal. Geomorphology 204:192–207. doi:10.1016/j.geomorph.2013.08.004

    Article  Google Scholar 

  • Gómez-Villar A, Álvarez-Martínez J, García-Ruiz JM (2006) Factors influencing the presence or absence of tributary-junction fans in the Iberian Range, Spain. Geomorphology 81(3-4):252–264. doi:10.1016/j.geomorph.2006.04.011

    Article  Google Scholar 

  • González DEF, Malagnino EC (1984) Geomorfología. In: Ramos VA (ed) Relatorio del IX Congreso Geológico Argentino. Geología y recursos naturales de la Provincia de Río Negro Asociación Geológica Argentina, Buenos Aires, pp 347–364

    Google Scholar 

  • Gravelius H (1914) Grundriß der Gesamten Gewässerkunde, Band 1: Flußkunde. Goschen, Berlin

    Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275–370

    Article  Google Scholar 

  • Jenson SK (1991) Applications of hydrologic information automatically extracted from digital elevation models. Hydrol Process 5:31–44. doi:10.1002/hyp.3360050104

    Article  Google Scholar 

  • Jenson SK, Domingue JO (1988) Extracting topographic structure from digital elevation data for geographic information system analysis. Photogramm Eng Remote Sensing 54(11):1593–1600

    Google Scholar 

  • León RJ, Bran D, Collantes M, Paruelo JM, Soriano A (1998) Grandes unidades de vegetación de la Patagonia extra andina. Ecologia Austral 8:125–144

    Google Scholar 

  • Mandelbrot BB (1977) The fractal geometry of nature. W. H. Freeman and Company, New York

    Google Scholar 

  • Martínez H, Náñez C, Lizuain A, Dal Molin C, Turel A, Dalponte M, Faroux A (2001) Descripción de la Hoja Geológica -San Antonio Oeste, Provincia de Río Negro. SEGEMAR, Buenos Aires

    Google Scholar 

  • Masoud M (2014) Rainfall-runoff modeling of ungauged Wadis in arid environments (case study Wadi Rabigh-Saudi Arabia). Arab J Geosci 8(5):2587–2606. doi:10.1007/s12517-014-1404-0

    Article  Google Scholar 

  • Mather PM, Doornkamp JC (1970) Multivariate analysis in geography with particular reference to drainage-basin morphometry. JSTOR 51:163–187. doi:10.2307/621768

    Google Scholar 

  • Melton MA (1957) An analysis of the relations among elements of climate, surface properties and geomorphology (Tech. Rep. 11). Columbia University, New York

    Google Scholar 

  • Metz M, Mitasova H, Harmon RS (2011) Efficient extraction of drainage networks from massive, radar-based elevation models with least cost path search. Hydrol Earth Syst Sci 15:667–678. doi:10.5194/hess-15-667-2011

    Article  Google Scholar 

  • Miller JR, Ritter DF, Kochel RC (1990) Morphometric assessment of lithologic controls on drainage basin evolution in the Crawford upland, South Central Indiana. American J Sci 290:569–599

    Article  Google Scholar 

  • O’Callaghan J, Mark DM (1984) The extraction of drainage networks from digital elevation data. Comput Vis Graph 28:323–344

    Article  Google Scholar 

  • Olivares G, Sisul A (2005) Los recursos hídricos en el sector costero rionegrino. In: Freddy Masera R, Lew J, Serra Pirano G (eds) Las mesetas patagónicas que caen al mar: La costa rionegrina. Gobierno de Río Negro, Río Negro, pp 237–247

    Google Scholar 

  • Perucca LP, Esper AY (2011) Morphometric characterization of del Molle Basin applied to the evaluation of flash floods hazard, Iglesia Department, San Juan, Argentina. Quat Int 233(1):81–86. doi:10.1016/j.quaint.2010.08.007

    Article  Google Scholar 

  • Raux J, Copard Y, Laignel B, Fournier M, Masseï N (2011) Classification of worldwide drainage basins through the multivariate analysis of variables controlling their hydrosedimentary response. Global Planet Change 76:117–127. doi:10.1016/j.gloplacha.2010.12.005

    Article  Google Scholar 

  • Rodriguez-Iturbe I, Rinaldo A (1997) Fractal River Basins: chance and self-organization. Cambridge University Press, Cambridge

    Google Scholar 

  • Schumm SA (1956) Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol Soc Am Bull 67:597–646

    Article  Google Scholar 

  • Sener A, Davraz A, Ozcelik M (2005) An integration of GIS and remote sensing in groundwater investigations: a case study in Burdur, Turkey. Hydrogeol J 13:826–834. doi:10.1007/s10040-004-0378-5

    Article  Google Scholar 

  • Sharma SK, Tignath S, Gajbhiye S, Patil R (2013) Application of principal component analysis in grouping geomorphic parameters of Uttela watershed for hydrological modeling. IJRSG 2(6):63–70

    Google Scholar 

  • Singh PK, Kumar V, Purohit RC, Kothari M, Dashora PK (2009) Application of principal component analysis in grouping geomorphic parameters for hydrologic modeling. Water Resour Manag 23:325–339. doi:10.1007/s11269-008-9277-1

    Article  Google Scholar 

  • Sreedevi PD, Sreekanth PD, Khan HH, Ahmed S (2012) Drainage morphometry and its influence on hydrology in an semi arid region: using SRTM data and GIS. Environ Earth Sci 70(2):839–848. doi:10.1007/s12665-012-2172-3

    Article  Google Scholar 

  • SSRH-INA (2002) Atlas Digital de los Recursos Hídricos Superficiales de la República Argentina. Subsecretaría de Recursos Hídricos de la Nación Instituto Nacional del Agua, Buenos Aires

    Google Scholar 

  • Strahler AN (1957) Quantitative analysis of watershed geomorphology. Am Geophys Union Trans 38(6):913–920

    Article  Google Scholar 

  • Strahler AN (1964) Quantitative geomorphology of drainage basins and channel networks. In: Chow VT (ed) Handbook of applied hydrology. McGraw-Hill, New York, pp 439–476

    Google Scholar 

  • Subyani AM, Qari MH, Matsah MI (2010) Digital elevation model and multivariate statistical analysis of morphometric parameters of some wadis, western Saudi Arabia. Arab J Geosci 5:147–157. doi:10.1007/s12517-010-0149-7

    Article  Google Scholar 

  • Thomas J, Joseph S, Thrivikramji KP, Abe G (2011) Morphometric analysis of the drainage system and its hydrological implications in the rain shadow regions, Kerala, India. J Geogr Sci 21(6):1077–1088. doi:10.1007/s11442-011-0901-2

    Article  Google Scholar 

  • Vieceli N, Bortolin TA, Mendes LA, Bacarim G, Cemin G, Schneider VE (2014) Morphometric evaluation of watersheds in Caxias do Sul City, Brazil, using SRTM (DEM) data and GIS. Environ Earth Sci 73(9):5677–5685. doi:10.1007/s12665-014-3823-3

    Article  Google Scholar 

  • Vogt JV, Colombo R, Bertolo F (2003) Deriving drainage networks and catchment boundaries: a new methodology combining digital elevation data and environmental characteristics. Geomorphology 53(3-4):281–298. doi:10.1016/S0169-555X(02)00319-7

    Article  Google Scholar 

  • Wheater HS (2007) Modelling hydrological processes in arid and semi-arid areas: an itroduction to the workshop. In: Wheater HS, Sorooshian S, Sharma KD (eds) Hydrological modelling in arid and semi-arid areas, part of international hydrology series. Cambridge University Press, Cambridge, pp 1–19

    Chapter  Google Scholar 

  • Wolock DM, Winter TC, Mcmahon G (2004) Delineation and evaluation of hydrologic-landscape regions in the United States using geographic information system tools and multivariate statistical analyses. Environ Manage 34(1):S71–S88. doi:10.1007/s00267-003-5077-9

    Article  Google Scholar 

  • Yamazaki D, Oki T, Kanae S (2009) Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map. Hydrol Earth Syst Sci 13(11):2241–2251. doi:10.5194/hess-13-2241-2009

    Article  Google Scholar 

  • Youssef AM, Pradhan B, Hassan AM (2010) Flash flood risk estimation along the St. Katherine road, Southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environ Earth Sci 62(3):611–623. doi:10.1007/s12665-010-0551-1

    Article  Google Scholar 

Download references

Acknowledgments

Partial support of this work was provided by grants from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (PICT 2012-1065), and Universidad Nacional del Sur (PGI 24/H127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibila A. Genchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by: H. A. Babaie

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Appendix Geologic map of the study area. Note: Simplified from Busteros et al. (1998); Franchi et al. (1998); Martínez et al. (2001) (GIF 401 kb)

(TIF 13512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genchi, S.A., Vitale, A.J., Perillo, G.M.E. et al. Geomorphometric assessment of drainage systems in a semi-arid region of Argentina using geospatial tools and multivariate statistics. Earth Sci Inform 9, 309–324 (2016). https://doi.org/10.1007/s12145-016-0258-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-016-0258-2

Keywords

Navigation