Earth Science Informatics

, Volume 8, Issue 1, pp 5–19 | Cite as

A geologic timescale ontology and service

Research Article

Abstract

We have developed an OWL ontology for the geologic timescale, derived from a Unified Modeling Language (UML) model that formalized the practice of the International Commission for Stratigraphy (ICS) (Cox and Richard 2005). The UML model followed the ISO/TC 211 modeling conventions, and was the basis for an XML implementation that was integrated into GeoSciML 3.0. The OWL ontology is derived using rules for generating OWL ontologies from ISO-conformant UML models, as provided in a (draft) standard from ISO/TC 211. The basic ontology is also aligned with SKOS to allow multilingual labels, and to enable delivery through a standard vocabulary interface. All versions of the International Stratigraphic Chart from 2004 to 2014 have been encoded using the ontology. Following ICS practice, the elements of the timescale retain the same identifiers across the multiple versions, though the information describing each geochronologic unit evolves with the versions of the timescale. The timescales are published through multiple web interfaces and APIs.

Keywords

OWL SKOS UML Stratigraphy Timescale Chronostratigraphy Reference system Versioning 

References

  1. Beckett D, Berners-Lee T, Prud’hommeaux E, Carothers G (2014) RDF 1.1 Turtle. World Wide Web Consortium. http://www.w3.org/TR/2014/REC-turtle-20140225/. Accessed 15 May 2014
  2. Berrueta D, Phipps J (2008) Best Practice Recipes for Publishing RDF Vocabularies. World Wide Web Consortium. http://www.w3.org/TR/swbp-vocab-pub/. Accessed 28 February 2014
  3. Bizer C, Lehmann J, Kobilarov G et al (2009) DBpedia - a crystallization point for the Web of data. Web Semant 7:154–165. doi:10.1016/j.websem.2009.07.002 CrossRefGoogle Scholar
  4. Cohen KM, Finney SC, Gibbard PL et al (2013) The ICS international chronostratigraphic chart. Episodes 36:199–204Google Scholar
  5. Cox SJD (2013) An explicit OWL representation of ISO/OGC Observations and Measurements. In: Corcho O, Henson C, Barnaghi P (eds) Proc. 6th Int. Work. Semant. Sens. Networks co-located with 12th Int. Semant. Web Conf. (ISWC 2013). Sun SITE Central Europe, Sydney, Australia, October 22nd, 2013., pp 1–18. http://ceur-ws.org/Vol-1063/paper1.pdf. Accessed 28 February 2014
  6. Cox SJD, Richard SM (2005) A formal model for the geologic time scale and global stratotype section and point, compatible with geospatial information transfer standards. Geosphere 1:119. doi:10.1130/GES00022.1 CrossRefGoogle Scholar
  7. Cox SJD, Richard SM (2014) RDF representation of International Chronostratigraphic Chart (Geologic Timescale). doi: 10.4225/08/537452F354E36
  8. Cox SJD, Yu J, Rankine T (2014) A Linked Data API for SKOS vocabularies. Semant. Web J. submitted:Google Scholar
  9. Fils D, Cervato C, Reed J et al (2009) CHRONOS architecture: experiences with an open-source services-oriented architecture for geoinformatics. Comput Geosci 35:774–782. doi:10.1016/j.cageo.2008.02.035 CrossRefGoogle Scholar
  10. Gradstein FM, Ogg JG, Smith AG (2005) Geologic time scale 2004. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  11. Hobbs JR, Pan F (2006) Time Ontology in OWL. World Wide Web Consortium. http://www.w3.org/TR/owl-time/. Accessed 28 February 2014
  12. ISO/IEC (2005) ISO/IEC 19501:2005 - Information technology -- Open Distributed Processing -- Unified Modeling Language (UML) Version 1.4.2. International Organization for Standardization, GenevaGoogle Scholar
  13. ISO/TC-211 (2002) ISO 19108:2002 - Geographic information -- Temporal schema. International Organization for Standardization, GenevaGoogle Scholar
  14. ISO/TC-211 (2005a) ISO/TS 19103:2005 - Geographic information -- Conceptual schema language. International Organization for Standardization, GenevaGoogle Scholar
  15. ISO/TC-211 (2005b) ISO 19109:2005 - Geographic information -- Rules for application schema. International Organization for Standardization, GenevaGoogle Scholar
  16. ISO/TC-211 (2011) ISO 19156:2011 - Geographic information -- Observations and measurements. International Organization for Standardization, GenevaGoogle Scholar
  17. ISO/TC-211 (2013) ISO/DIS 19109:2013 - Geographic information -- Rules for application schema. International Organization for Standardization, GenevaGoogle Scholar
  18. ISO/TC-211 (2014a) ISO/DIS 19150-2:2014 - Geographic information -- Ontology -- Part 2: Rules for developing ontologies in the Web Ontology Language (OWL). International Organization for Standardization, GenevaGoogle Scholar
  19. ISO/TC-211 (2014b) ISO/DIS 19103 - Geographic information -- Conceptual schema language. International Organization for Standardization, GenevaGoogle Scholar
  20. Ma X, Fox P (2013) Recent progress on geologic time ontologies and considerations for future works. Earth Sci Informa 6:31–46. doi:10.1007/s12145-013-0110-x CrossRefGoogle Scholar
  21. Ma X, Carranza EJM, Wu C et al (2011) A SKOS-based multilingual thesaurus of geological time scale for interoperability of online geological maps. Comput Geosci 37:1602–1615. doi:10.1016/j.cageo.2011.02.011 CrossRefGoogle Scholar
  22. Ma X, Carranza EJM, Wu C, van der Meer FD (2012) Ontology-aided annotation, visualization, and generalization of geological time-scale information from online geological map services. Comput Geosci 40:107–119. doi:10.1016/j.cageo.2011.07.018 CrossRefGoogle Scholar
  23. Miles A, Bechhofer S (2009) SKOS Simple Knowledge Organization System Reference. World Wide Web Consortium. http://www.w3.org/TR/skos-reference/. Accessed 28 February 2014
  24. Murphy M, Salvador A (1994) International Stratigraphic Guide - Abridged Edition. International Commission for Stratigraphy and Geological Society of AmericaGoogle Scholar
  25. Object Management Group (2009) Ontology Definition Metamodel - Version 1.0. Object Management Group, Needham, Mass. USA. http://www.omg.org/spec/ODM/1.0/. Accessed 28 February 2014
  26. Perrin M, Mastella LS, Morel O, Lorenzatti A (2011) Geological time formalization: an improved formal model for describing time successions and their correlation. Earth Sci Informa 4:81–96. doi:10.1007/s12145-011-0080-9 CrossRefGoogle Scholar
  27. Raskin RG, Pan MJ (2005) Knowledge representation in the semantic web for Earth and environmental terminology (SWEET). Comput Geosci 31:1119–1125. doi:10.1016/j.cageo.2004.12.004 CrossRefGoogle Scholar
  28. Remane J, Bassett MG, Cowie JW et al (1996) Revised guidelines for the establishment of global chronostratigraphic standards by the international commission on stratigraphy (ICS). Episodes 19:77–81Google Scholar
  29. Richard SM, CGI-Interoperability-Working-Group (2007) GeoSciML – A GML Application for Geoscience Information Interchange. In: Soller D (ed) Digit. Mapp. Tech.’06 — Work. Proceedings, USGS Open File Rep. 2007-1285. United States Geological Survey, Columbus, OH., pp 47–59. http://pubs.usgs.gov/of/2007/1285/pdf/Richard.pdf. Accessed 28 February 2014
  30. Shergold JH, Cooper RA (2005) The Cambrian period. A geol. Time scale 2004. Cambridge University Press, CambridgeGoogle Scholar
  31. W3C OWL Working Group (2012) OWL 2 Web Ontology Language Document Overview (Second Edition). World Wide Web Consortium. http://www.w3.org/TR/owl2-overview/. Accessed 28 February 2014

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.CSIRO Land and WaterHighettAustralia
  2. 2.Arizona Geologic SurveyTucsonUSA

Personalised recommendations