Advertisement

Earth Science Informatics

, Volume 8, Issue 1, pp 187–196 | Cite as

Application of improved neuro-fuzzy GMDH to predict scour depth at sluice gates

  • Mohammad NajafzadehEmail author
  • Siow Yong Lim
Research Article

Abstract

An improved neuro-fuzzy based group method of data handling using the particle swarm optimization (NF-GMDH-PSO) is developed as an adaptive learning network to predict the localized scour downstream of a sluice gate with an apron. . The input characteristic parameters affecting the scour depth are the sediment size and its gradation, apron length, sluice gate opening, and the flow conditions upstream and downstream of the sluice gate. Six non-dimensional parameters were yielded to define a functional relationship between the input and output variables. The training and testing of the NF-GMDH network are performed using published scour data from the literature. The efficiency of the training stages for the NF-GMDH-PSO is investigated. The testing results for the NF-GMDH network are compared with the traditional approaches based on regression method. A sensitivity analysis is carried out to assign the most significant parameter for the scour prediction. The results showed that the NF-GMDH-PSO network produced lower error in scour prediction than all other models.

Keywords

Neuro-fuzzy GMDH Particle swarm optimization Apron Scour depth Sluice gate 

References

  1. Abdel-Aal RE, El-alfy E-SM (2009) Constructing optimal educational tests using GMDH-based item ranking and selection. Neurocomputing 72:1184–1197CrossRefGoogle Scholar
  2. Alavi AH, Gandomi AH (2011) Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing. Comput Struct 89(23–24):2176–2194CrossRefGoogle Scholar
  3. Amanifard N, Nariman-Zadeh N, Farahani MH, Khalkhali A (2008) Modeling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks. J Energy Convers Manag 49(10):2588–2594CrossRefGoogle Scholar
  4. Astakhov VP, Glitsky VV (2005) Tool life testing in gundrilling: an application of the group method of data handling (GMDH). Int J Mach Tools Manuf 45:509–517CrossRefGoogle Scholar
  5. Azamathulla HM (2012) Gene-expression programming to predict scour at a bridge abutment, IWA Journal of Hydroinformatics 14(2):324–331Google Scholar
  6. Azamathulla HM, Ghani AA (2011) ANFIS-based approach for predicting the scour depth at culvert outlets. Journal of Pipeline Systems Engineering and Practice, ASCE 2(1):35–40Google Scholar
  7. Azamathulla HM, Deo MC, Deolalikar PB (2008a) Alternative neural networks to estimate the scour below spillways. Adv Eng Softw 38(8):689–698CrossRefGoogle Scholar
  8. Azamathulla HM, Ghani AA, Zakaria NA, Lai SH, Chang CK, Leow CS, Abuhasan Z (2008b) Genetic programming to predict ski-jump bucket spill-way scour. J Hydrodyn Ser B 20(4):477–484CrossRefGoogle Scholar
  9. Azmathullah HM, Deo MC, Deolalikar PB (2005) Neural networks for estimation of scour downstream of a ski-jump bucket. J Hydraul Eng ASCE 131(10):898–908CrossRefGoogle Scholar
  10. Balachandar R, Kells JA (1997) Local channel scour in uniformly graded sediments: The time-scale problem. Can J Civ Eng 24(5):799–807CrossRefGoogle Scholar
  11. Balachandar R, Kells JA (1998) Instantaneous water surface and bed scour profiles using video image analysis. Can J Civ Eng 25(4):662–667Google Scholar
  12. Balachandar R, Kells JA, Thiessen RJ (2000) The effect of tailwater depth on the dynamics of local scour. Can J Civ Eng 27(1):138–150CrossRefGoogle Scholar
  13. Breusers HNC (1965) Conformity and time scale in two dimensional local scour. Publication 40. Delft Hydraulics Laboratory, DelftGoogle Scholar
  14. Chatterjee SS, Ghosh SN (1980) Submerged horizontal jet over erodible bed. J Hydraul Div Am Soc Civ Eng 106(11):1765–1782Google Scholar
  15. Chatterjee SS, Ghosh SN, Chatterjee M (1994) Local scour due to submerged horizontal jet. J Hydraul Eng 120(8):973–992CrossRefGoogle Scholar
  16. Dey S, Sarkar A (2006) Scour downstream of an apron due to submerged horizontal jets. J Hydraul Eng 132(3):246–257CrossRefGoogle Scholar
  17. Dey S, Westrich B (2003) Hydraulics of submerged jet subject to change in cohesive bed geometry. J Hydraul Eng 129(1):44–53CrossRefGoogle Scholar
  18. Gandomi AH, Alavi AH (2011) Applications of computational intelligence in behavior simulation of concrete materials. Chapter 9 in Computational Optimization and Applications in Engineering and Industry, XS Yang & S Koziel (eds) Springer SCI, 359:221–243Google Scholar
  19. Gandomi AH, Roke DA (2013) Intelligent formulation of structural engineering systems. Seventh M.I.T. Conference on Computational Fluid and Solid Mechanics-Focus: Multiphysics & Multiscale, Massachusetts Institute of Technology, Cambridge, MA, June 12–14Google Scholar
  20. Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013a) Metaheuristic Applications in Structures and Infrastructures. Elsevier, Waltham, MAGoogle Scholar
  21. Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013) In: Gandomi AH et al. (eds) Metaheuristics in modeling and optimization. Chapter 1 in metaheuristic applications in structures and infrastructures. Elsevier, 1–24Google Scholar
  22. Guven A, Azamathulla HM (2012) Gene-expression programming for flip-bucket spillway scour. Water Sci Technol 65(11):1982–1987CrossRefGoogle Scholar
  23. Guven A, Gunal M (2008a) Genetic programming approach for prediction of local scour downstream hydraulic structures. J Irrig Drain Eng 134(2):241–249CrossRefGoogle Scholar
  24. Guven A, Gunal M (2008b) Prediction of scour downstream of grade-control structures using neural networks. J Hydraul Eng ASCE 134(11):1656–1660CrossRefGoogle Scholar
  25. Hamidifar H, Omid MH, Nasrabadi M (2011) Scour downstream of a rough rigid apron. World Appl Sci J 14(8):1169–1178Google Scholar
  26. Hassan NMKN, Narayanan R (1985) Local scour downstream of an apron. J Hydraul Eng 111(11):1371–1385CrossRefGoogle Scholar
  27. Hwang H-S (2006) Fuzzy GMDH-type neural network model and its application to forecasting of mobile communication. Comput Ind Eng 50:450–457CrossRefGoogle Scholar
  28. Iba H, deGaris H (1996) Extending Genetic Programming with Recombinative Guidance. In: Angeline P, Kinnear K (eds) Advances in Genetic Programming 2. MIT Press, CambridgeGoogle Scholar
  29. Jamali A, Nariman-Zadeh N, Darvizeh A, Masoumi A, Hamrang S (2009) Multi-objective evolutionary optimization of polynomial neural networks for modelling and prediction of explosive cutting process. Eng Appl Artif Intell 22:676–687CrossRefGoogle Scholar
  30. Kalantary F, Ardalan H, Nariman-Zadeh N (2009) An investigation on the Su-NSPT correlation using GMDH type neural networks and genetic algorithms. Eng Geol 104(1–2):144–155CrossRefGoogle Scholar
  31. Kells JA, Balachandar R, Hagel KP (2001) Effect of grain size on local channel scour below a sluice gate. Can J Civ Eng 28(3):440–451CrossRefGoogle Scholar
  32. Lim SY, Yu G (2002) S0063ouring downstream of sluice gate. Proc Int Conf on Scour of Foundation (ICSF-I). Texas 395–409Google Scholar
  33. Madala HR, Ivakhnenko AG (1994) Inductive Learning Algorithms for Complex Systems Modeling. CRC Press, Boca Raton, FLGoogle Scholar
  34. Mehrara M, Moeini A, Ahrari M, Erfanifard A (2009) Investigating the efficiency in oil futures market based on GMDH approach. Expert Syst Appl 36(4):7479–7483CrossRefGoogle Scholar
  35. Nagasaka K, Ichihashi H, Leonard R (1995) Neuro-fuzzy GMDH and its application to modeling grinding characteristics. Int J Prod Res 33(5):1229–1240CrossRefGoogle Scholar
  36. Najafzadeh M, Azamathulla HM (2013) Group Method of Data Handling to Predict Scour Depth Around Bridge Piers. Neural. Comput Appl 23(7–8):2107–2112Google Scholar
  37. Najafzadeh M, Barani G-A (2011) Comparison of group method of data handling based genetic programming and back propagation systems to predict scour depth around bridge piers. Sci Iran 18(6):1207–1213CrossRefGoogle Scholar
  38. Najafzadeh M, Barani GA, Azamathulla HM (2012) Prediction of pipeline scour depth in clear-water and live-bed conditions using group method of data handling. Neural Comput & Applic. doi: 10.1007/s00521-012-1258-x Google Scholar
  39. Najafzadeh M, Barani G-A, Azamathulla HM (2013a) GMDH to prediction of scour depth around vertical piers in cohesive soils. Appl Ocean Res 40:35–41CrossRefGoogle Scholar
  40. Najafzadeh M, Barani G-A, Hessami Kermani MR (2013b) GMDH network based back propagation algorithm to predict abutment scour in cohesive soils. Ocean Eng 59:100–106CrossRefGoogle Scholar
  41. Najafzadeh M, Barani G-A, Hessami-Kermani MR (2013c) Group method of data handling to predict scour depth around vertical piles under regular waves. Sci Iran 30(3):406–413Google Scholar
  42. Najafzadeh M, Barani G-A, Hessami Kermani MR (2013d) Aboutment scour in live-bed and clear-water using GMDH Network. Water Sci Technol 67(5):1121–1128CrossRefGoogle Scholar
  43. Onwubolu GC (2008) Design of hybrid differential evolution and group method in data handling networks for modeling and prediction. Inform Sci 178:3618–3634CrossRefGoogle Scholar
  44. Srinivasan D (2008) Energy demand prediction using GMDH networks. Neuro Comput 72(1–3):625–629Google Scholar
  45. Takashi O, Hidetomo I, Tetsuya M, Kazunori N (1998) Orthogonal and successive projection methods for the learning of neurofuzzy GMDH. Introd Sci 110:5–24Google Scholar
  46. Witczak M, Korbicz J, Mrugalski M, Patton R (2006) A GMDH neural network-based approach to robust fault diagnosis: application to the DAMADICS benchmark problem. Control Eng Pract 14(6):671–683CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Civil EngineeringShahid Bahonar UniversityKermanIran
  2. 2.School of Civil and Environmental EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations