Earth Science Informatics

, Volume 6, Issue 4, pp 187–198 | Cite as

DEM and GIS analysis of sub-watersheds to evaluate relative tectonic activity. A case study of the North–south axis (Central Tunisia)

  • Noamen Rebai
  • Hammadi Achour
  • Rochdi Chaabouni
  • Rania Bou Kheir
  • Samir Bouaziz
Research Article


Morphotectonic analysis using geomorphic indexes has been developed as a basic tool to identify recent tectonic deformation in specific areas.This study was undertaken to develop an integrated quantitative geomorphic analysis of tectonic activity in the North–south axis, central of Tunisia. Different geomorphic indexes, including elongation ratio (E), drainage basin asymmetry (Af), hypsometric integral (Hi), Valley floor width-to-height ratio (Vf), mountain front sinuosity (Smf), and stream length gradient index (SL) were calculated. The relationships between the calculated indexes, their correlations and their significance (based on p-values) were also investigated.. Using the hierarchical cluster analysis based on Ward’s method, these indexes were classified into three classes describing the relative, different effect of tectonics in each fault segment. The higher deformation is concentrated in the NE-SW Boudinar fault, followed, in order of decreasing activity, by Goubrar, Gouleb, and Majoura normal faults. This pattern of variation in the relative degree of tectonic activity is consistent with field evidence.


DEM GIS Morphometry Relative tectonic activity 


  1. Abbes C (2004) Structuration et évolutions tectono-sédimentaires mésozoïques et cénozoïques associées aux accidents reghmatiques à la jonction des marges téthysienne et nord-africaine (Chaîne nord-sud, Tunisie centrale). Thesis (PhD) Université de Tunis.Google Scholar
  2. ASTER GDEM version 2 validation report (2011) ASTER global DEM validation: summary of Validation Results.Google Scholar
  3. Azaïez H, Bédir M, Tanfous D, Soussi M (2008) Seismic sequence stratigraphy and platform to basin reservoir structuring of Lower Cretaceous deposits in the Sidi Aïch-Majoura region (central Tunisia). J Afr Earth Sci 48:1–18Google Scholar
  4. Azor A, Keller EA, Yeats RS (2002) Geomorphic indicators of active fold growth: South Mountain-Oak Ridge anticline, Ventura basin, southern California. Geological Society of American Bulletin 114:745–753CrossRefGoogle Scholar
  5. Ben Ayed N (1986) Evolution tectonique de l’avant pays de la chaîne alpine de Tunisie du dè but du Mézosoique à l’Actuel. Thèse Doc. Etat, Univ. Paris Sud, France, p 328Google Scholar
  6. Bedir M (1995) Mécanismes géodynamiques des bassins associés aux couloirs de coulissement de la marge atlasique de la Tunisie, sismo-stratigraphie, sismo-tectonique et implications pétrolières, PhD Thesis, Université Tunis-2, 1995.Google Scholar
  7. Ben Jemiaa M (1986) Evolution tectonique de la zone de failles Trozza-Labeied (Tunisie centrale). Thèse 3ème cycle, Univ. Paris Sud Orsay, France, 158 ppGoogle Scholar
  8. Bishop P (2007) Long-term landscape evolution: Linking tectonics and surface processes. Earth Surface Process and Landforms 32:329–365CrossRefGoogle Scholar
  9. Bouaziz S, Barrier E, Soussi M, Turki MM, Zouari H (2002) Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics 357:227–253CrossRefGoogle Scholar
  10. Brookfield ME (1998) The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: Rivers draining southwards. Geomorphology 22:285–312CrossRefGoogle Scholar
  11. Bull WB (2007) Tectonic geomorphology of mountains: A New approach to Paleoseismology. Wiley-Blackwell, Oxford, 328 ppCrossRefGoogle Scholar
  12. Bull WB (2009) Geomorphic responses to climatic change. Blackburn Press, New Jersey, 326 ppGoogle Scholar
  13. Bull WB, McFadden LD (1977) Tectonic geomorphology north and south of the Garlock fault, California. In: Doehring OD (ed) Geomorphology in arid regions. Allen & Unwin, London, pp 115–138Google Scholar
  14. Burbank DW, Anderson RS (2001) Tectonic geomorphology. Blackwell Science, Oxford, 247 ppGoogle Scholar
  15. Burollet PF, Rouvier H (1971) La Tunisie. Tectonique de l’Afrique, Sciences de la Terre. UNESCO.Google Scholar
  16. Chen YC, Sung Q, Cheng KY (2003) Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: Tectonic implications based on stream gradient and hypsometric analysis. Geomorphology 56:109–137CrossRefGoogle Scholar
  17. Chihi L (1995) Les fossés néogènes et quaternaires de la Tunisie et de la mer pélagienne. Etude structurale et leur signification dans le cadre de la géodynamique de la Méditerranée. Thèse Doc. Etat, Univ. Tunis II, Tunisia, 365 ppGoogle Scholar
  18. Cloetingh S, Cornu T (2005) Surveys on environmental tectonics. Quaternary Science Revue 24:235–240CrossRefGoogle Scholar
  19. Dehbozorgi M, Pourkermani M, Arian M, Matkan A.A, Motamedi H, Hosseiniasl A (2010) Quantitative analysis of relative tectonic activity in the Sarvestan area, central Zagros, Iran. Geomorphology 121:329–341Google Scholar
  20. Delcaillau B, Deffontaines B, Floissac L, Angelier J, Deramond J, Souquet P, Chu HT, Lee JF (1998) Morphotectonic evidence from lateral propagation of active frontal fold; Pakuashan anticline, foothills of Taiwan. Geomorphology 24:263–290CrossRefGoogle Scholar
  21. Delcaillau B, Carozza JM, Laville E (2006) Recent fold growth and drainage development: the Janauri and Chandigarh anticlines in Siwalik foothills, NW India. Geomorphology 76:241–256CrossRefGoogle Scholar
  22. Dhahri F, Boukadi N (2007) Chevauchements différentiels et décrochements dans la chaîne atlasique de Tunisie : exemple des Jebels Ousselet, Bou Dabbous et Bou Hajar. C R Géoscience 339:347–357CrossRefGoogle Scholar
  23. El Hamdouni R, Irigaray C, Fernández T, Chacón J, Keller E A (2008) Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology 96(1–2):150–173Google Scholar
  24. England P, Molnar P (1990) Surface uplift, uplift of rock, and exhumation of rocks. Geology 18:1173–1177CrossRefGoogle Scholar
  25. Font M, Amorese D, Lagarde JL (2010) DEM and GIS analysis of the stream gradient index to evaluate effects of tectonics: The Normandy intraplate area (NW France). Geomorphology 119:172–180CrossRefGoogle Scholar
  26. Ghribi R. (2002) Etude géomorphologique et néotectonique du bassin versant de l’Oued Leben-Ouadran. Thesis (DEA). Université de Sfax.Google Scholar
  27. Gourmelin C, Rigane A, Broquet P, Truillet R, Aite MR (2000) Caractères structuraux et dynamiques d’un bassin en transtension: la plate-forme tunisienne à l’Yprésien terminal. Bull Soc Geol Fr 171(5):559–568Google Scholar
  28. Hack JT (1973) Stream-profile analysis and stream-gradient index. Journal of Research of the US Geological Survey 4:421–429Google Scholar
  29. Haller P (1983) Structure profonde du Sahel tunisien. Interprétation géodynamique. Thèse 3ème Cycle Univ. Franche Comté, no. 421, France, 162 ppGoogle Scholar
  30. Hare PW, Gardner TW (1985) Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. In: Morisawa M, Hack JT (eds) Tectonic Geomorphology. Proceedings of the 15th Annual Bighamton Geomorphology Symposium. Allen & Unwin, Boston, pp 75–104Google Scholar
  31. Hermo W (2009) Geomorphic evidence for recent uplift of the Fitzcarrald Arch (Peru): A response to the Nazca Ridge subduction. Geomorphology 107:107–117CrossRefGoogle Scholar
  32. Keller EA, Pinter N (1996) Active tectonics. Prentice Hall, Upper Saddle RiverGoogle Scholar
  33. Keller EA, Pinter N (2002) Active tectonics. Earthquakes, uplift, and landscape. Prentice Hall, New JerseyGoogle Scholar
  34. Kooi H, Beaumont C (1996) Large scale geomorphology: Classical concepts reconciled and integrated with contemporary ideas via a surface process model. J Geophys Res 101(B2):1117–1142CrossRefGoogle Scholar
  35. Li J, Wang DS (2010) Effects of DEM sources on hydrologic applications. Computers, Environment and Urban Systems 34:251–261CrossRefGoogle Scholar
  36. Luo W (2000) Quantifying groundwater sapping processes with a hypsometric analysis technique. J Geophys Res 105:1685–1694CrossRefGoogle Scholar
  37. Maechler M (2012) Package ‘cluster’. R package Version 1.14.2.Google Scholar
  38. Maidment DR (2002) Arc hydro: GIS for water resources. ESRI Press, Redlands, p 203Google Scholar
  39. Malik JN, Mohanty C (2007) Active tectonic influence on the evolution of drainage and landscape: geomorphic signatures from frontal and hinterland areas along the north western Himalaya, India. Journal of Asian Earth Sciences 29:604–618CrossRefGoogle Scholar
  40. Marple RT, Talwani P (1993) Evidence of possible tectonic up-warping along the South Carolina coastal plain from an examination of river morphology and elevation data. Geology 21:651–654CrossRefGoogle Scholar
  41. Maydeu-Olivares A (1996) Classification of prison inmates based on hierarchical cluster analysis. Psicothema 8(3):709–715Google Scholar
  42. Molin P, Pazzaglia FJ, Dramis F (2004) Geomorphic expression of active tectonics in a rapidly-deforming forearc, sila massif, Calabria, southern Italy. Am J Sci 304:559–589CrossRefGoogle Scholar
  43. Ouali J (1984) Evolution et géodynamique du chaînon Nara-Sidi Khalif (Tunisie centrale), Thèse de 3e cycle, université Rennes-1, (120 p.).Google Scholar
  44. Pedrera A, Pérez-Peña JV, Galindo-Zaldívar J, Azañón JM, Azor A (2009) Testing the sensitivity of geomorphic indices in areas of low-rate active folding (eastern Betic Cordillera, Spain). Geomorphology 105:218–231CrossRefGoogle Scholar
  45. Patriat M, Ellouz N, Dey Z, Gaulier JM, Ben Kilani H (2003) The Hammamet, Gabès and Chotts basins (Tunisia): a review of the subsidence history. Sediment Geol 156:241–262CrossRefGoogle Scholar
  46. Pérez-Peña JV, Azor A, Azañón JM, Keller EA (2010) Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology 119:74–87CrossRefGoogle Scholar
  47. Peters G, Van Balen RT (2007) Tectonic geomorphology of the northern Upper Rhine Graben, Germany. Glob Planet Chang 58:310–334CrossRefGoogle Scholar
  48. R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  49. Ramirez-Herrera MT (1998) Geomorphic assessment of active tectonics in the Acambay Graben, Mexican volcanic belt. Earth Surf Process Landforms 23:317–332CrossRefGoogle Scholar
  50. Ruszkiczay-Rüdiger Z, Fodor L, Horváth E, Telbisz T (2009) Discrimination of fluvial, eolian and neotectonic features in a low hilly landscape: A DEM-based morphotectonic analysis in the Central Pannonian Basin, Hungary. Geomorphology 104:203–217CrossRefGoogle Scholar
  51. Schumm SA (1956) Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Bull Geol Soc Am 67:597–646CrossRefGoogle Scholar
  52. Schumm SA, Dumont JF, Holbrook JM (2000) Active tectonics and alluvial rivers. Cambridge University Press, Cambridge, 276 ppGoogle Scholar
  53. Seeber L, Gornitz V (1983) River profiles along the Himalayan Arc as indicators of active tectonics. Tectonophysics 92:335–367CrossRefGoogle Scholar
  54. Silva PG, Goy JL, Zazo C, Bardaji T (2003) Fault-generated mountain fronts in southeast Spain: geomorphologic assessment of tectonic and seismic activity. Geomorphology 50(1–3):203CrossRefGoogle Scholar
  55. Singh T, Jain V (2009) Tectonic constraints on watershed development on frontal ridges: Mohand Ridge, NW Himalaya, India. Geomorphology 106:231–241CrossRefGoogle Scholar
  56. Solyom PB, Tucker GE (2007) The importance of the catchment area-length relationship in governing non-steady state hydrology, optimal junction angles and drainage network pattern. Geomorphology 88:84–108CrossRefGoogle Scholar
  57. Strahler AN (1952) Hypsometric (area-altitude) analysis of erosional topography. Geol Soc Am Bull 63:1117–1142CrossRefGoogle Scholar
  58. Tarboton DG (1997) A new method for the determination of flow directions and contributing areas in grid digital elevation models. Water Resour Res 33(2):309–319CrossRefGoogle Scholar
  59. Troiaini F, Della Seta M (2008) The use of the Stream Length-Gradient index in morphotectonic analysis of small catchments: A case study from Central Italy. Geomorphology 102:159–168CrossRefGoogle Scholar
  60. Yaich C (1984) Etude géologique des chaînons de Chérahil et du Krechem el Artsouma (Tunisie centrale). Liaison avec les structures profondes des plaines adjacentes. Thèse 3ème Cycle, Univ. Besançon, France, 165 ppGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Noamen Rebai
    • 1
  • Hammadi Achour
    • 2
  • Rochdi Chaabouni
    • 2
  • Rania Bou Kheir
    • 3
  • Samir Bouaziz
    • 2
  1. 1.Faculté des Sciences de Tunis, Département de Géologie, Unité de recherche UR 11ES14, Dynamiques des bassins sédimentaires et structures géologiquesUniversité Tunis El ManarTunisTunisia
  2. 2.Université de Sfax, Ecole Nationale d’Ingénieurs de SfaxSfaxTunisie
  3. 3.Department of Geography, GIS Research LaboratoryLebanese University, Faculty of Letters and Human SciencesFanarLebanon

Personalised recommendations