Earth Science Informatics

, Volume 6, Issue 3, pp 145–163 | Cite as

Assessment of the availability of near-real time open weather data provided by networks of surface stations in Spain

  • Federico-Vladimir Gutierrez-Corea
  • Miguel-Angel Manso-Callejo
  • Antonio Vázquez-Hoehne
Research Article

Abstract

The aims of this research are: (i) to check availability of weather observations from automated stations in Spain, (ii) to qualitatively and quantitatively describe the networks identified, (iii) to analyze availability of the observations gathered for 3 different networks [two government (GOV): AEMET with national coverage and CASTILLA Y LEÓN on a regional level; and METEOCLIMATIC, a network of volunteer weather observation (VWO) stations on a national level], and (iv) to undertake a spatial redundancy and lacunarity analysis of them. The results reveal: the existence of heterogeneous VWO networks complementing the GOV, differences within and among networks as far as data acquisition frequency, varying delays in their publication, and semantic differences in the observations made. An inventory was made of 24 networks (16 GOV and 8 VWO) with 3,908 stations deployed in Spain. An analysis of observations from 3 networks reveals that 88 % of the stations in the volunteer network record more than two observations per hour. 56 % of the AEMET stations report more than 48 observations every day, 31 % report between 25 and 48 observations a day. Conversely, the CASTILLA Y LEÓN network records data every half hour. The redundancy analysis reveals a 3,429-drop in the number of unduplicated stations. Following the lacunarity analysis of spatial distribution, it is possible to conclude that 60.72 % of the cells do not contain any stations.

Keywords

Volunteers Weather data Surface stations Lacunarity 

References

  1. Abella A (2011) Reutilización de información pública y privada en España. Rooter, Madrid. http://rooter.es/documents/PAPER_REUTILIZACION_INFORMACION_PUBLICA_PRIVADA_OPENDATA.pdf. Accessed January 15 2011
  2. AEMET (2010) AEMET establece el acceso libre y gratuito a todos sus datos por medios electrónicos. http://www.aemet.es/es/zona_portada_destacada/politicadatos. Accessed May 17 2011
  3. Al-Bakri M, Fairbairn D (2012) Assessing similarity matching for possible integration of feature classifications of geospatial data from official and informal sources. IJGIS 26(8):1437–1456Google Scholar
  4. Bocco M, Ovando G, Sayago S (2006) Development and evaluation of neural network models to estimate daily solar radiation at Córdoba, Argentina. Pesquisa Agropecuária Brasileira 41(2):179–184CrossRefGoogle Scholar
  5. BOE (2011) Real Decreto 1495/2011, de 24 de octubre, por el que se desarrolla la Ley 37/2007, de 16 de noviembre, sobre reutilización de la información del sector público, para el ámbito del sector público estatal. Boletín Oficial del Estado (BOE): BOE-A-2011-17560. http://www.boe.es/diario_boe/txt.php?id=BOE-A-2011-17560&lang=en
  6. Conway ED (1997) An introduction to satellite image interpretation. Johns Hopkins Univ Pr, BaltimoreGoogle Scholar
  7. CWOP (2012) Citizen Weather Observer Program. http://www.wxqa.com. Accessed February 20 2012
  8. Junta de Galicia (2012a) Portal de Open Data de la Xunta de Galicia. http://abertos.xunta.es/mapa-do-portal. Accessed April 5 2012
  9. Junta de Galicia (2012b) Meteo Galicia. http://www.meteogalicia.es/web/index.action. Accessed April 5 2012
  10. European Commission (2009) Ministerial Declaration on eGovernment. The 5th eGovernment conference. Malmö, Sweden 2009. http://www.egov2009.se/wp-content/uploads/Ministerial-Declaration-on-eGovernment.pdf. Accessed March 8 2012
  11. Fiebrich CA (2009) History of surface weather observations in the United States. Earth Sci Rev 93(3–4):77–84CrossRefGoogle Scholar
  12. Finn PG, Udy NS, Baltais SJ, Price K, Coles L (2010) Assessing the quality of seagrass data collected by community volunteers in moreton bay marine park, australia. Environ Conserv 37(01):83–89CrossRefGoogle Scholar
  13. Girres JF, Touya G (2010) Quality assessment of the french openstreetmap dataset. Trans GIS 14(4):435–459CrossRefGoogle Scholar
  14. Gobierno Vasco (2011) Agencia Vasca de Meteorologia. http://www.euskalmet.euskadi.net/s07-5853x/es/meteorologia/home.apl?e=5. Accessed December 2 2011
  15. Gobierno Vasco (2012) Open Data EUSKADI. http://opendata.euskadi.net/w79-home/es. . Accessed March 11 2012
  16. Goodchild MF (2007a) Citizen as voluntary sensors: Spatial data infrastructure in the world of web 2.0. IJSDIR 2:24–32. http://ijsdir.jrc.ec.europa.eu/index.php/ijsdir/article/view/28/22
  17. Goodchild MF (2007b) Citizens as sensors: the world of volunteered geography. GeoJournal 69(4):211–221CrossRefGoogle Scholar
  18. Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of things (IoT): a vision, architectural elements, and future directions. Futur Gener Comput Syst. doi: 10.1016/j.future.2013.01.010 Google Scholar
  19. Hartley B (2012) The Internet of Things - Weather Monitoring too. WMO TECHNICAL CONFERENCE ON METEOROLOGICAL AND ENVIRONMENTAL INSTRUMENTS AND METHODS OF OBSERVATION. Belgium, Brussels. http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-109_TECO-2012/Session5/O5_08_Hartley_Internet_of_Things.pdf. Accessed March 31 2013
  20. Kalampokis E, Tambouris E, Tarabanis K (2011) Open government data: a stage model. Electron Gov 6846:235–246. doi: 10.1007/978-3-642-22878-0_20 CrossRefGoogle Scholar
  21. Knights M (2007) Web 2.0. Commun Eng 5(1):30–35CrossRefGoogle Scholar
  22. Lusher W, Jackson J, Morgan K (2009) The Florida automated weather network (FAWN): Ten years of providing weather information to florida growers. University of Florida IFAS Extension Publication #SL 298. http://edis.ifas.ufl.edu/pdffiles/SS/SS51100.pdf. Accessed December 19 2011
  23. Miorandi D, Sicari S, De Pellegrini F, Chlamtac I (2012) Internet of things: vision, applications and research challenges. Ad Hoc Netw 10(7):1497–1516CrossRefGoogle Scholar
  24. Mitchell H (2010) Opening up about open government: do open government initiatives measure up? EContent 33(6):24–29Google Scholar
  25. Neis P, Zielstra D, Zipf A (2011) The street network evolution of crowdsourced maps: OpenStreetMap in germany 2007–2011. Futur Internet 4(1):1–21. doi: 10.3390/fi401000 CrossRefGoogle Scholar
  26. NOAA (2012) Meteorological Assimilation Data Ingest System. http://madis.noaa.gov. Accessed February 21 2012
  27. NREL (1992) National solar radiation data base (1961–1990) user's Manual. National Climatic Data Center, Asheville, North Carolina, USA. http://rredc.nrel.gov/solar/pubs/NSRDB. Accessed February 12 2012
  28. Obama B (2009) T Transparency and open government. Memorandum for the Heads of Executive Departments and Agencies. http://www.whitehouse.gov/the_press_office/TransparencyandOpenGovernment. Accessed March 9 2012
  29. OpenStreetMap (2012) http://www.openstreetmap.org. Accessed February 14 2012
  30. Plotnick RE, Gardner RH, Hargrove WW, Prestegaard K, Perlmutter M (1996) Lacunarity analysis: a general technique for the analysis of spatial patterns. Phys Rev E 53(5):5461CrossRefGoogle Scholar
  31. Polo J, Zarzalejo LF, Ramírez L (2008) Solar radiation derived from satellite images. In: Badescu V (ed) Modeling solar radiation at the earth’s surface: Recent advances. Springer, Berlin, pp 449–462CrossRefGoogle Scholar
  32. Roebber PJ, Schultz DM, Colle BA, Stensrud DJ (2004) Toward improved prediction: high-resolution and ensemble modeling systems in operations. Weather Forecast 19:936–949CrossRefGoogle Scholar
  33. Running SW, Nemani RR, Hungerford RD (1987) Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis. Can J For Res 17(6):472–483CrossRefGoogle Scholar
  34. Salcedo-Sanz S, Pérez-Bellido ÁM, Ortiz-García EG, Portilla-Figueras A, Prieto L, Correoso F (2009) Accurate short-term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks. Neurocomputing 72(4–6):1336–1341CrossRefGoogle Scholar
  35. Schroth C, Janner T (2007) Web 2.0 and SOA: converging concepts enabling the internet of services. IT Prof 9(3):36–41CrossRefGoogle Scholar
  36. Weather Underground (2012a) Weather Underground. http://www.wunderground.com. Accessed February 20 2012
  37. Weather Underground (2012b) About Our Data. http://www.wunderground.com/about/data.asp. Accessed February 20 2012
  38. WeatherLink (2012) http://www.weatherlink.com/map.php. Accessed February 22 2012
  39. WikiMapia (2012) http://wikimapia.org. Accessed February 16 2012
  40. Williams M, Cornford D, Bastin L, Jones R, Parker S (2009) Automatic processing, quality assurance and serving of real-time weather data over lightweight protocols. In Proceedings of the 2009 Conference on Spatial Statistics and GIS (StatGIS 2009), Milos Island, Grecee 2009. http://www.stat.aau.at/Tagungen/statgis/2009/StatGIS2009_Williams_1.pdf. Accessed January 12 2012
  41. WMO (2012) World Meteorological Oranization. http://www.wmo.int. Accessed February 17 2012
  42. Yanes A (2011) OpenWeather: A peer-to-peer weather data transmission protocol. Master of Science in Technology, Aalto University, AaltoGoogle Scholar
  43. Zelenka A, Perez R, Seals R, Renné D (1999) Effective accuracy of satellite-derived hourly irradiances. Theor Appl Climatol 62(3):199–207CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Federico-Vladimir Gutierrez-Corea
    • 1
  • Miguel-Angel Manso-Callejo
    • 1
  • Antonio Vázquez-Hoehne
    • 1
  1. 1.ETSI Topografía, Geodesia y CartografíaUniversidad Politécnica de MadridMadridSpain

Personalised recommendations