Advertisement

Trends in research related to the Dark Triad: A bibliometric analysis

  • Bojana M. DinićEmail author
  • Tanja Jevremov
Article

Abstract

The aim of this study was to investigate trends in research related to the Dark Triad using a bibliometric analysis. Four main clusters were recognized on author keywords: Dark Triad traits (Machiavellianism, narcissism, and psychopathy, along with terms such are life history theory, mating, and morality), measurement (short Dark Triad measures and terms related to psychometrics), personality models (Big Five, Five Factor Model, HEXACO, and terms related to sadism and aggression), and mainly gender differences cluster. The measurement and personality models clusters gathered the latest research, but specifically studies containing terms related to short Dark Triad measures and sadism. Analysis of the indexed keywords revealed a similar organization of the clusters, but with a great prominence of clinical studies and methodological terms. The map of bibliographic coupling showed several relatively separated groups of authors with different focus in cited references, with Jonason, P.K. in the central position. However, a map of co-citation of authors revealed closeness of these separated groups, with Jonason, P.K. and Paulhus, D.L. with nearly equal number of citations.

Keywords

Dark Triad traits Life history strategy, short Dark Triad measures Personality models Gender differences Bibliometric analysis 

Notes

Acknowledgements

This study was partially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia [Grant ON179006].

Compliance with Ethical Standards

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical Statement

Authors state that the research meets all ethical requirements, and is adherent to the legal requirements of the Institutional Review Board which are in agreement with the Declaration of Helsinki.

Supplementary material

12144_2019_250_MOESM1_ESM.doc (4.9 mb)
ESM 1 (DOC 5029 kb)

References

  1. Bertl, B., Pietschnig, J., Tran, U. S., Stieger, S., & Voracek, M. (2017). More or less than the sum of its parts? Mapping the dark triad of personality onto a single dark Core. Personality and Individual Differences, 114, 140–144.  https://doi.org/10.1016/j.paid.2017.04.002.CrossRefGoogle Scholar
  2. Book, A., Visser, B. A., & Volk, A. A. (2015). Unpacking “evil”: Claiming the core of the dark triad. Personality and Individual Differences, 73, 29–38.CrossRefGoogle Scholar
  3. Book, A., Visser, B. A., Blais, J., Hosker-Field, A., Methot-Jones, T., Gauthier, N. Y., et al. (2016). Unpacking more “evil”: What is at the core of the dark tetrad? Personality and Individual Differences, 90, 269–272.  https://doi.org/10.1016/j.paid.2015.11.009.CrossRefGoogle Scholar
  4. Boonroungrut, C., & Oo, T. (2017). Dark triad trends in personality studies: Systematic review with bibliometric network analysis. Journal of Humanity and Social Sciences Masharkham University, 36(6), 63–76.Google Scholar
  5. Buckels, E. E., Trapnell, P. D., & Paulhus, D. L. (2014). Trolls just want to have fun. Personality and Individual Differences, 67, 97–102.  https://doi.org/10.1016/j.paid.2014.01.016.CrossRefGoogle Scholar
  6. Burnham, J. F. (2006). Scopus database: A review. Biomedical digital libraries, 3(1), 1–8.  https://doi.org/10.1186/1742-5581-3-1.CrossRefGoogle Scholar
  7. Cecchino, N. J. (2010). Google scholar. Journal of the Medical Library Association, 98(4), 320–321.  https://doi.org/10.3163/1536-5050.98.4.016.CrossRefGoogle Scholar
  8. Chabrol, H., Van Leeuwen, N., Rodgers, R., & Séjourné, N. (2009). Contributions of psychopathic, narcissistic, Machiavellian, and sadistic personality traits to juvenile delinquency. Personality and Individual Differences, 47, 734–739.  https://doi.org/10.1016/j.paid.2009.06.020.CrossRefGoogle Scholar
  9. D'Souza, M. F., & Jones, D. N. (2017). Taxonomy of the scientifc network of the dark triad: Revelations in the business and accounting context. Revista de Educação e Pesquisa em Contabilidade (REPeC) [Journal of Education and Research in Accounting], 11(3), 290–306.  https://doi.org/10.17524/repec.v11i3.1588.Google Scholar
  10. Furnham, A., Richards, S. C., & Paulhus, D. L. (2013). The dark triad of personality: A 10 year review. Social and Personality Psychology Compass, 7(3), 199–216.  https://doi.org/10.1111/spc3.12018.CrossRefGoogle Scholar
  11. Harzing, A. W., & Alakangas, S. (2016). Google scholar, Scopus and the web of science: A longitudinal and cross-disciplinary comparison. Scientometrics, 106(2), 787–804.  https://doi.org/10.1007/s11192-015-1798-9.CrossRefGoogle Scholar
  12. Hodson, G., Hogg, S. M., & MacInnis, C. C. (2009). The role of “dark personalities” (narcissism, machiavellianism, psychopathy), big five personality factors, and ideology in explaining prejudice. Journal of Research in Personality, 43, 686–690.  https://doi.org/10.1016/j.jrp.2009.02.005.CrossRefGoogle Scholar
  13. Jevremov, T. (2013). Razlike između mapa naučnih disciplina formiranih na osnovu koincidencije deskriptora nastalih kognitivnom obradom informacija i mapa proizvedenih primenom statističkih algoritama [differences between maps of scientific disciplines based on coincidence of descriptors generated by cognitive information processing and maps produced by using statistical algorithms]. Unpublished doctoral dissertation, University of Novi Sad, Serbia.Google Scholar
  14. Jonason, P. K., & Webster, G. D. (2010). The dirty dozen: A concise measure of the dark triad. Psychological Assessment, 22(2), 420–432.  https://doi.org/10.1037/a0019265.CrossRefGoogle Scholar
  15. Jones, D. N., & Figueredo, A. J. (2013). The core of darkness: Uncovering the heart of the dark triad. European Journal of Personality, 27, 521–531.  https://doi.org/10.1002/per.1893.CrossRefGoogle Scholar
  16. Jones, D. N., & Paulhus, D. L. (2014). Introducing the short dark triad (SD3): A brief measure of dark personality trait. Assessment, 21(1), 28–41.  https://doi.org/10.1177/1073191113514105.CrossRefGoogle Scholar
  17. Joshi, A. (2016). Comparison between SCOPUS & ISI web of science. Journal Global Values, 7(1), 1–11. Retrieved from http://anubooks.com/wp-content/uploads/2017/08/2016-7-JVG-No.-1-1.pdf. Accessed 15 Jan 2019.Google Scholar
  18. Karakus, M. (2018). Psychological capital research in social sciences: A bibliometric analysis. Electronic International Journal of Education, Arts, and Science (EIJEAS), 4(8), 39–58.Google Scholar
  19. Klavans, R., & Boyack, K. W. (2006). Quantitative evaluation of large maps of science. Scientometrics, 68(3), 475–499.  https://doi.org/10.1007/s11192-006-0125-x.CrossRefGoogle Scholar
  20. Leydesdorff, L., & Zaal, R. (1988). Co-words and citations: Relations between document sets and environments. In L. Egghe & R. Rousseau (Eds.), Informetrics 87–88 (pp. 105–119). Amsterdam: Elsevier.Google Scholar
  21. Leydesdorff, L., & Rafols, I. (2012). Interactive overlays: A new method for generating global journal maps from web-of-science data. Journal of Informetrics, 6(2), 318–332. Retreived from https://arxiv.org/abs/1301.1013. Accessed 15 Jan 2019.
  22. Marcus, D. K., & Zeigler-Hill, V. (2015). A big tent of dark personality traits. Social and Personality Psychology Compass, 9(8), 434–446.  https://doi.org/10.1111/spc3.12185.CrossRefGoogle Scholar
  23. Miller, J. D., Gaughan, E. T., Maples, J., & Price, J. (2011). A comparison of agreeableness scores from the big five inventoryand the NEO PI-R: Consequences for the study of narcissismand psychopathy. Assessment, 18, 335–339.  https://doi.org/10.1177/1073191111411671.
  24. Miller, J. D., Hyatt, C. S., Maples-Keller, J. L., Carter, N. T., & Lynam, D. R. (2016). Psychopathy and Machiavellianism: A distinction without a difference? Journal of Personality, 85(4), 439–453.  https://doi.org/10.1111/jopy.12251.CrossRefGoogle Scholar
  25. Murphy, L.S., Reinsch, S., Najm, W.I., Dickerson, V.M., Seffinger, M.A., Adams, A., & Mishra, S.I. (2003). Searching biomedical databases on complementary medicine: The use of controlled vocabulary among authors, indexers and investigators. BMC Complementary and Alternative Medicine, 3(3), 1–13. Published online 2003 Jul 7.  https://doi.org/10.1186/1472-6882-3-3.
  26. Noack, A. (2009). Modularity clustering is force-directed layout. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 79(2 Pt 2), 026102.  https://doi.org/10.1103/PhysRevE.79.026102.CrossRefGoogle Scholar
  27. Noruzi, A. (2005). Google scholar: The new generation of citation indexes. Libri, 55(4), 170–180. Retrieved from http://hdl.handle.net/10760/7179. Accessed 15 Jan 2019.CrossRefGoogle Scholar
  28. O’Meara, A., Davies, J., & Hammond, S. (2011). The psychometric properties and utility of the short sadistic impulse scale (SSIS). Psychological Assessment, 23, 523–531.  https://doi.org/10.1037/a0022400.CrossRefGoogle Scholar
  29. Paulhus, D. L., & Williams, K. M. (2002). The dark triad of personality: Narcissism, Machiavellianism, and psychopathy. Journal of Research in Personality, 36(6), 556–563.  https://doi.org/10.1016/S0092-6566(02)00505-6.CrossRefGoogle Scholar
  30. Perianes-Rodriguez, A., Waltman, L., & Van Eck, N. J. (2016). Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics, 10(4), 1178–1195.  https://doi.org/10.1016/j.joi.2016.10.006.CrossRefGoogle Scholar
  31. Rafferty, P., & Hidderly, R. (2007). Flickr and democratic indexing: Dialog approaches to indexing. Aslib Proceedings: New Information Perspectives, 59(4/5), 397–410.CrossRefGoogle Scholar
  32. Rafols, I., Porter, A. L., & Leydesdorff, L. (2010). Science overlay maps: A new tool for research policy and library management. Journal of the American Society for Information Science and Technology, 61(9), 1871–1887.CrossRefGoogle Scholar
  33. Sa’ed, H. Z., Sweileh, W. M., Awang, R., & Al-Jabi, S. W. (2018). Global trends in research related to social media in psychology: Mapping and bibliometric analysis. International Journal of Mental Health Systems, 12(4), 4.  https://doi.org/10.1186/s13033-018-0182-6.Google Scholar
  34. Sleep, C. E., Lynam, D. R., Hyatt, C. S., & Miller, J. D. (2017). Perils of partialing redux: The case of the dark triad. Journal of Abnormal Psychology, 126, 939–950.  https://doi.org/10.1037/abn0000278.CrossRefGoogle Scholar
  35. Van Eck, N. J., & Waltman, L. (2009). How to normalize cooccurrence data? An analysis of some well-known similarity measures. Journal of the American Society for Information Science and Technology, 60(8), 1635–1651  https://doi.org/10.1002/asi.21075.CrossRefGoogle Scholar
  36. Van Eck, N. J., & Waltman, L. (2014). Visualizing bibliometric networks. In Y. Ding, R. Rousseau, & D. Wolfram (Eds.), Measuring scholarly impact: Methods and practice (pp. 285–320). Switzerland: Springer.Google Scholar
  37. Vize, C. E., Lynam, D. R., Collison, K. L., & Miller, J. D. (2016). Differences among dark triad components: A meta–analytic investigation. Personality disorders: Theory, research, and treatment, 9(2), 101–111.  https://doi.org/10.1037/per0000222.CrossRefGoogle Scholar
  38. Zhao, D., & Strotmann, A. (2014). The knowledge base and research front of information science 2006–2010: An author cocitation and bibliographic coupling analysis. Journal of the Association for Information Science and Technology, 65(5), 995–1006.  https://doi.org/10.1002/asi.23027.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Psychology, Faculty of PhilosophyUniversity of Novi Sad, SerbiaNovi SadSerbia

Personalised recommendations