Advertisement

Knowledge How, Procedural Knowledge, and the Type-Token Action Clause

  • Garry YoungEmail author
Article
  • 4 Downloads

Abstract

This paper argues that the propositions “S knowing how to Φ entails that S has the ability to Φ” and “S knowing how to Φ does not entail the ability to Φ” can both be true and non-contradictory when true, so long as one distinguishes between Φ as an action-type and Φ as an action-token. In order to defend this claim, recent work by Young (on the type-token action clause), Levy (on knowledge how and motor representations), and Gaultier (on procedural knowledge) is discussed with a view to integrating into a coherent and novel position certain commonalities within their respective views. As a consequence of this integration, a revised version of Young’s type-token action clause is suggested that provides comprehensive support for the assertion that knowing how to Φ both does and does not necessitate the ability to Φ, depending on whether one is talking about action types or action tokens.

Keywords

Intellectualism Anti-intellectualism Intelligent action Action-type Action-token Motor image Proprioception 

Notes

Compliance with Ethical Standards

Conflict of Interest

The author declares that there are no conflicts of interest.

References

  1. Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11(9), 1109–1116.CrossRefGoogle Scholar
  2. Arbib, M. A. (2003). Schema theory. The handbook of brain theory and neural networks (pp. 993–998). Cambridge: MIT Press.Google Scholar
  3. Bengson, J., & Moffett, M. A. (2012). Nonpropositional intellectualism. In J. Bengson & M. A. Moffett (Eds.), Knowing how: essays on knowledge, mind, and action (pp. 161–195). Oxford: Oxford University Press.CrossRefGoogle Scholar
  4. Bernstein, N. A. (1996). On dexterity and its development. In M. L. Latash & M. T. Turvey (Eds.), Dexterity and its development (pp. 3–244). Mahwah: Erlbaum (Original work written 1947).Google Scholar
  5. Blakemore, S.-J., & Frith, C. D. (2003). Self-awareness and action. Current Opinion in Neurobiology, 13, 219–224.CrossRefGoogle Scholar
  6. Braun, D. A., Aertsen, A., Wolpert, D. M., & Mehring, C. (2009). Motor task variation induces structural learning. Current Biology, 19, 352–357.CrossRefGoogle Scholar
  7. Cross, E. S., Hamilton, A. F. d. C., & Grafton, S. T. (2006). Building a motor simulation de novo: observation of dance by dancers. NeuroImage, 31, 1257–1267.CrossRefGoogle Scholar
  8. Dietz, V. (2002). Proprioception and locomotor disorders. Nature Review Neuroscience, 3, 781–790.CrossRefGoogle Scholar
  9. Dinse, H. R., & Merzenich, M. M. (2002). Adaption of inputs in the somatosensory system. In M. Fahle & T. Poggio (Eds.), Perceptual learning (pp. 19–42). Cambridge: MIT Press.Google Scholar
  10. Ferretti, G. (2016). Through the forest of motor representations. Consciousness and Cognition, 43, 177–196.CrossRefGoogle Scholar
  11. Fontana, A. P., Kilner, J. M., Rodrigues, E. C., Joffily, M., Nighoghossian, N., Vargas, C. D., et al. (2012). Role of parietal cortex in predicting incoming actions. Neuroimage, 59, 556–564.Google Scholar
  12. Fridland, E. (2014). They’ve lost control: reflections on skill. Synthese, 191, 2729–2750.CrossRefGoogle Scholar
  13. Gallese, V., & Metzinger, T. (2003). Motor ontology: the representational reality of goals, actions and selves. Philosophical Psychology, 16(3), 365–388.CrossRefGoogle Scholar
  14. Gaultier, B. (2017). Skills, procedural knowledge, and knowledge-how. Synthese, 194(12), 4959–4981.CrossRefGoogle Scholar
  15. Glick, E. (2015). Practical modes of presentation. Nous, 49(3), 538–559.Google Scholar
  16. Grunbaum, T. (2008). The body in action. Phenomenology and the Cognitive Sciences, 7, 243–261.CrossRefGoogle Scholar
  17. Haggard, P. (2008). Human volition: towards a neuroscience of will. Nature Reviews Neuroscience, 9, 934–946.CrossRefGoogle Scholar
  18. Han, J., Anson, J., Waddington, G., & Adams, R. (2014). Sport attainment and proprioception. International Journal of Sports Science and Coaching, 9(1), 159–170.CrossRefGoogle Scholar
  19. Hayes, S. J., Elliott, D., & Bennett, S. J. (2010). General motor representations are developed during action-observation. Experimental Brain Research, 204, 199–206.CrossRefGoogle Scholar
  20. Ingram, T. G. J., Kraeutner, S. N., Solomon, J. P., Westwood, D. A., & Boe, S. G. (2016). Skill acquisition via motor imagery relies on both motor and perceptual learning. Behavioral Neuroscience, 130(2), 252–260.CrossRefGoogle Scholar
  21. Jeannerod, M. (1994). The representing brain: neural correlates of motor intention and imagery. Behavioral and Brain Sciences, 17(2), 187–245.CrossRefGoogle Scholar
  22. Jeannerod, M. (1995). Mental imagery in the motor context. Neuropsychologia, 33(11), 1419–1432.CrossRefGoogle Scholar
  23. Jola, C., Davis, A., & Haggard, P. (2011). Proprioceptive integration and body representation: insights into dancers’ expertise. Experimental Brain Research, 213, 257–265.CrossRefGoogle Scholar
  24. Jung, E.-M., & Newen, A. (2010). Knowledge and abilities: the need for a new understanding of knowing how. Phenomenology and the Cognitive Sciences, 9(1), 113–131.CrossRefGoogle Scholar
  25. Levy, N. (2017). Embodied saviour-faire knowledge-how requires motor representations. Synthese, 194(2), 511–530.CrossRefGoogle Scholar
  26. Lex, H., Schütz, C., Knoblauch, A., & Schack, T. (2015). Cognitive representation of a complex motor action executed by different motor systems. Minds and Machines, 25, 1–15.CrossRefGoogle Scholar
  27. Mylopoulos, M., & Pacherie, E. (2017). Intentions and motor representations: the interface challenge. Review of Philosophy and Psychology, 8(2), 317–336.CrossRefGoogle Scholar
  28. Ranganathan, R., Wieser, J., Mosier, K. M., Mussa-Ivaldi, F. A., & Scheidt, R. A. (2014). Learning redundant motor tasks with and without overlapping dimensions: facilitation and interference effects. The Journal of Neuroscience, 34(24), 8289–8299.CrossRefGoogle Scholar
  29. Reed, N., McLeod, P., & Dienes, Z. (2010). Implicit knowledge and motor skill: what people who know how to catch don’t know. Consciousness and Cognition, 19, 63–76.CrossRefGoogle Scholar
  30. Rizzolatti, G., & Sinigaglia, C. (2006). Mirrors in the brain: how our minds share actions and emotions (F. Anderson, trans.). Oxford: Oxford University Press.Google Scholar
  31. Saling, L., & Philips, J. G. (2007). Automatic behaviour: efficient not mindless. Brain Research Bulletin, 73, 1–20.Google Scholar
  32. Sanes, J. N., & Donoghue, J. P. (2000). Plasticity and primary motor cortex. Annual Review of Neuroscience, 23, 393–415.CrossRefGoogle Scholar
  33. Sobierajewicz, J., Szarkiewicz, S., Przekoracka-Krawczyk, A., Jaśkowski, W., & van der Lubbe, R. (2016). To what extent can motor imagery replace motor execution while learning a fine motor skill? Advances in Cognitive Psychology, 12(4), 178–191.CrossRefGoogle Scholar
  34. Swinnen, S. P., Vangheluwe, S., Wagemans, J., Coxon, J. P., Goble, D. J., Van Impe, A., et al. (2010). Shared neural resources between left and right interlimb coordination skills: the neural substrate of abstract motor representations. NeuroImage, 49, 2570–2580.CrossRefGoogle Scholar
  35. Wong, J. D., Kistemaker, D. A., Chin, A., & Gribble, P. L. (2012). Can proprioceptive training improve motor learning? Journal of Neurophysiology, 108, 3313–3321.CrossRefGoogle Scholar
  36. Wright, C. (1990). Generalized motor programs: reexamining claims of effector independence in writing. In M. Jeannerod (Ed.), Attention and performance XIII: motor representation and control (pp. 294–320). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  37. Young, G. (2017). Knowing how, ability, and the type-token distinction. Synthese, 194(2), 583–607.CrossRefGoogle Scholar
  38. Yousif, N., Cole, J., Rothwell, J., & Diedrichsen, J. (2015). Proprioception in motor learning: lessons from a deafferented subject. Experimental Brain Research, 233, 2449–2459.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Historical and Philosophical StudiesUniversity of MelbourneMelbourneAustralia

Personalised recommendations