Acta Analytica

, Volume 32, Issue 3, pp 333–354 | Cite as

A Uniform Account of Regress Problems

  • David Löwenstein


This paper presents a uniform general account of regress problems in the form of a pentalemma—i.e., a set of five mutually inconsistent claims. Specific regress problems can be analyzed as instances of such a general schema, and this Regress Pentalemma Schema can be employed to generate deductively valid arguments from the truth of a subset of four claims to the falsity of the fifth. Thus, a uniform account of the nature of regress problems allows for an improved understanding of specific regress objections or arguments, and, correspondingly, of the general logical geography of the debate about infinite regresses. This uniform approach is illustrated by a treatment of the classical epistemological problem of justification, but it encompasses a whole variety of cases including explanation and ontological grounding. Furthermore, this general account is compared and contrasted with the existing literature discussing argument schemata for regress objections, particularly with the work of Jan Willem Wieland. It is shown how such other schemata can be incorporated and superseded by the general Regress Pentalemma Schema.


Infinite regress Regress argument Regress objection Regress problem · Vicious regress Jan Willem Wieland Justification Agrippa’s trilemma Explanation Grounding. 


  1. Armstrong, D. (1974). Infinite regress arguments and the problem of universals. Australasian Journal of Philosophy, 52, 191–201.CrossRefGoogle Scholar
  2. Audi, P. (2012). Grounding: toward a Theory of the In-Virtue-of Relation. The Journal of Philosophy, 109, 685–711.CrossRefGoogle Scholar
  3. Black, O. (1996). Infinite regress arguments and infinite regresses. Acta Analytica, 16, 95–124.Google Scholar
  4. Fine, K. (2012). Guide to ground. In Correia, F., & Schnieder, B. (Eds.) Metaphysical Grounding. Understanding the Structure of Reality. (pp. 37–80). Cambridge University Press: Cambridge.Google Scholar
  5. Gratton, C. (1994). Circular definitions, circular explanations, and infinite regresses. Argumentation, 8, 295–308.CrossRefGoogle Scholar
  6. Gratton, C. (1997). What is an infinite regress argument Informal Logic, 18, 203–224.Google Scholar
  7. Gratton, C. (2010). Infinite Regress Arguments: Springer.Google Scholar
  8. Jacquette, D. (1989). Dualities of self-non-application and infinite regress. Logique et analyse, 125-126, 29–40.Google Scholar
  9. Jacquette, D. (1996). Adversus Adversus Regressum (Against Infinite Regress Objections). Journal of speculative philosophy, 10, 105–119.Google Scholar
  10. Jacquette, D. (2015). Jan Willem Wieland: infinite regress arguments. Argumentation, 29, 351–360.CrossRefGoogle Scholar
  11. Passmore, J.A. (1961). Philosophical reasoning. New York: Scribner’s Sons.Google Scholar
  12. Rescher, N. (1987). Aporetic method in philosophy. The Review of Metaphysics, 41(2), 283–297.Google Scholar
  13. Schaffer, J. (2009). On What Grounds What, In Chalmers, D.J., Manley, D., & Wasserman, R. (Eds.) Metametaphysics. New Essays on the Foundations of Ontology (pp. 347–383). Oxford: Clarendon Press.Google Scholar
  14. Taşdelen, İ. (2014). A counterfactual analysis of regress arguments. Acta Analytica, 29, 195–213.CrossRefGoogle Scholar
  15. Wieland, J.W. (2011a). Filling a typical gap in a regress argument. Logique et analyse, 216, 589–597.Google Scholar
  16. Wieland, J.W. (2011b). On Gratton’s Infinite Regress Arguments. Argumentation, 25, 107–113.CrossRefGoogle Scholar
  17. Wieland, J.W. (2012). Regress argument reconstruction. Argumentation, 26, 489–503.CrossRefGoogle Scholar
  18. Wieland, J.W. (2013a). Infinite regress arguments. Acta Analytica, 28, 95–109.CrossRefGoogle Scholar
  19. Wieland, J.W. (2013b). Strong and weak regress arguments. Logique et analyse, 224, 439–461.Google Scholar
  20. Wieland, J.W. (2014). Infinite Regress Arguments. Cham: Springer.CrossRefGoogle Scholar
  21. Wilson, J.M. (2014). No work for a Theory of Grounding. Inquiry, 57(5-6),535–579.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Freie Universität Berlin & Westfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations