Acta Analytica

, Volume 28, Issue 1, pp 95–109 | Cite as

Infinite Regress Arguments

Article

Abstract

Infinite regress arguments play an important role in many distinct philosophical debates. Yet, exactly how they are to be used to demonstrate anything is a matter of serious controversy. In this paper I take up this metaphilosophical debate, and demonstrate how infinite regress arguments can be used for two different purposes: either they can refute a universally quantified proposition (as the Paradox Theory says), or they can demonstrate that a solution never solves a given problem (as the Failure Theory says). In the meantime, I show that Black’s view on infinite regress arguments (1996, this journal) is incomplete, and how his criticism of Passmore can be countered.

Keywords

Infinite Regress Argument Schema Paradox Failure 

Notes

Acknowledgements

Thanks to: Anna-Sofia Maurin, Jonathan Sozek, Maarten Van Dyck, Erik Weber and the referees of the journal for advice. The author is PhD fellow of the Research Foundation Flanders.

References

  1. Aristotle (384-22 BCE). Posterior analytics. Transl. J. Barnes (1975). Oxford: OUP.Google Scholar
  2. Black, O. (1988). Infinite regresses of justification. International Philosophical Quarterly, 27, 421–437.CrossRefGoogle Scholar
  3. Black, O. (1996). Infinite regress arguments and infinite regresses. Acta Analytica, 16, 95–124.Google Scholar
  4. Blackburn, S. (1994). Regress. In Oxford dictionary of philosophy (2nd ed. 2005). Oxford: OUP.Google Scholar
  5. Cling, A. D. (2009). Reasons, regresses and tragedy: The epistemic regress problem and the problem of the criterion. American Philosophical Quarterly, 46, 333–346.Google Scholar
  6. Day, T. J. (1986). Infinite regress arguments. Some metaphysical and epistemological problems. PhD dissertation, Indiana University.Google Scholar
  7. Geach, P. (1979). Truth, love, and immortality. Berkeley: University of California.Google Scholar
  8. Gettier, E. L. (1965). Review of Passmore’s Philosophical reasoning. Philosophical Review, 2, 266–269.CrossRefGoogle Scholar
  9. Gratton, C. (2010). Infinite regress arguments. Dordrecht: Springer.Google Scholar
  10. Johnstone, H. W., Jr. (1996). The rejection of infinite postponement as a philosophical argument. The Journal of Speculative Philosophy, 10, 92–104.Google Scholar
  11. Juvenal (1st-2nd century CE). The satires. Transl. N. Rudd (1992). Oxford: OUP.Google Scholar
  12. Klein, P. D. (2003). When infinite regresses are not vicious. Philosophy and Phenomenological Research, 66, 718–729.CrossRefGoogle Scholar
  13. Klein, P. D. (2007). Human knowledge and the infinite progress of reasoning. Philosophical Studies, 134, 1–17.CrossRefGoogle Scholar
  14. Maurin, A.-S. (2007). Infinite regress: Virtue or vice? In T. Rønnow-Rasmussen et al. (Eds.), Hommage à Wlodek (pp. 1-26). Lund University.Google Scholar
  15. Passmore, J. (1961). Philosophical reasoning (2nd ed. 1970). New York: Scribner’s Sons.Google Scholar
  16. Peijnenburg, J. (2010). Ineffectual foundations. Mind, 119, 1125–1133.CrossRefGoogle Scholar
  17. Rescorla, M. (2012). Modest foundationalism, infinitism, and perceptual justification. To appear in Klein, P. D. & J. Turri (Eds.), Ad infinitum. New essays on epistemological infinitism. Oxford: OUP.Google Scholar
  18. Russell, B. (1903). The objectionable and the innocent kind of endless regress. In The principles of mathematics (§329, 2nd ed. 1937). London: Allen & Unwin.Google Scholar
  19. Sanford, D. H. (1984). Infinite regress arguments. In J. H. Fetzer (Ed.), Principles of philosophical reasoning (pp. 93–117). Totowa, NJ: Rowman & Allanheld.Google Scholar
  20. Schlesinger, G. N. (1983). Metaphysics. Methods and problems. Oxford: Blackwell.Google Scholar
  21. Schnieder, B. (2010). Propositions united. Dialectica, 64, 289–301.CrossRefGoogle Scholar
  22. Sextus Empiricus (±160-210 CE). Outlines of Pyrrhonism. Transl. B. Mates (1996). In The skeptic way. Oxford: OUP.Google Scholar
  23. Tolhurst, W. (1995). Vicious regress. In R. Audi (Ed.), Cambridge dictionary of philosophy, (2nd ed. 1999). Cambridge: CUP.Google Scholar
  24. Wittgenstein, L. (1967). Zettel. Ed. & Transl. G. E. M. Anscombe (2nd ed. 1981). Oxford: Blackwell.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Centre for Logic and Philosophy of Science, Department of Philosophy and Moral ScienceGhent UniversityGhentBelgium

Personalised recommendations