Advertisement

Metaphysica

, Volume 9, Issue 1, pp 93–117 | Cite as

Functions and Shapes in the Light of the International System of Units

  • Ingvar JohanssonEmail author
original paper

Abstract

Famously, Galilei made the ontological claim that the book of nature is written in the language of mathematics. Probably, if only implicitly, most contemporary natural scientists share his view. This paper, in contradistinction, argues that nature is only partly written in the language of mathematics; partly, it is written in the language of functions and partly in a very simple purely qualitative language, too. During the argumentation, three more specific but in themselves interesting theses are put forward: first (in Section 3), there are more shapes than real numbers; second (in Section 4), the metrological notion ‘amount of substance’ can profitably be exchanged for ‘number of entities’; third (in Section 5), prototypical concepts will always be scientifically important.

Keywords

Quantities Functions Shapes SI system 

Notes

Acknowledgement

This work was done under the auspices of the Wolfgang Paul Program of the Alexander von Humboldt Foundation, the Network of Excellence in Semantic Interoperability and Data Mining in Biomedicine of the European Union, and the project Forms of Life sponsored by the Volkswagen Foundation.

The ideas were first presented in a symposium on the philosophy of biology in Buffalo, NY (USA), October, 2006. In July 2007, I presented them at my home research institute, IFOMIS, Saarland University (Germany). Here is a list of persons that I would like to thank for useful comments on either of these occasions: James Beebe, Michelle Carnell, Randall Dipert, Pierre Grenon, Boris Hennig, Barry Smith, and Neil Williams. For comments on a later written version I thank Giovanni Camardi, Jean Gayon, Frédéric Trembaly, Inge-Bert Täljedal, and Marcel Weber; for comments on my thoughts about the impossibility of quantifying shapes, I would like to thank Brandon Bennett; and for kindly answering a couple of questions around the mole and the SI, I thank René Dybkaer. It is quite necessary to add: the author alone is responsible for the views now publicly put forward.

References

  1. Ariew A, Cummins R, Perlman M (eds) (2002) Functions. New Essays in the Philosophy of Psychology and Biology. Oxford University Press, Oxford.Google Scholar
  2. Boorse C (1976) Wright on Functions. Philosophical Review 85:70–86.CrossRefGoogle Scholar
  3. Cummins R (1975) Functional Analysis. Journal of Philosophy 72:741–765.CrossRefGoogle Scholar
  4. Dybkaer R (2000) The term ‘chemon’ instead of ‘amount of substance’ allows a succinct systematic terminology and harmonized equivalents in translation. Metrologia 37: 301–304.CrossRefGoogle Scholar
  5. Dybkaer R (2004a) Units for quantities of dimension one. Metrologia 41:69–73.CrossRefGoogle Scholar
  6. Dybkaer R (2004b) An Ontology on Property for physical, chemical, and biological systems. Blackwell Munksgaard, Copenhagen.Google Scholar
  7. Emerson WH (2005) On the concept of dimension. Metrologia 42:L21–L22.CrossRefGoogle Scholar
  8. Hand DJ (2004) Measurement Theory and Practice. The world through quantification. Arnold, London.Google Scholar
  9. Hempel CG (1965) Aspects of Scientific Explanation. The Free Press, New York.Google Scholar
  10. Hoffman DD, Richards WA (1982) Representing smooth plane curves for recognition: implications for figure-ground reversal. In Proceedings of AAAI-82 (American Association for Artificial Intelligence).Google Scholar
  11. Johansson I (1998) Pattern as an Ontological Category. In Guarino N (ed) Formal Ontology in Information Systems. IOS Press, Amsterdam.Google Scholar
  12. Johansson I (2002) Determinables as Universals. The Monist 83:101–121.Google Scholar
  13. Johansson I (2004) Functions, Function Concepts, and Scales. The Monist 87:96–114.Google Scholar
  14. Johansson I (2006a) The Constituent Function Analysis of Functions. In Koskinen HJ et al (eds) Science—A Challenge to Philosophy? Peter Lang, Frankfurt.Google Scholar
  15. Johansson I (2006b) Identity Puzzles and Supervenient Identities. Metaphysica. International Journal for Ontology and Metaphysics 7:7–33.Google Scholar
  16. Johansson I, Smith B, Munn K, Tsikolia N, Elsner K, Ernst D, Siebert D (2005) Functional Anatomy: A Taxonomic Proposal. Acta Biotheoretica 53:153–166.CrossRefGoogle Scholar
  17. Kaplan A (1964) The Conduct of Inquiry. Chandler Publishing Company, San Francisco.Google Scholar
  18. Krohs U (2007) Functions as Based on a Concept of General Design. In: Synthese (online first; DOI  10.1007/s11229-007-9258-6).
  19. Mahner M, Bunge M (1997) Foundations of Biophilosophy. Springer, Berlin.Google Scholar
  20. Manning RN (1997) Biological Function, Selection, and Reduction. The British Journal for the Philosophy of Science 48:69–82.CrossRefGoogle Scholar
  21. McGlashan ML (1977) Amount of substance and the mole. Physics Education 12:276–278.CrossRefGoogle Scholar
  22. McGlashan ML (1994/95) Amount of Substance and the mole. Metrologia 31:447–455.CrossRefGoogle Scholar
  23. McLaughlin P (2001) What Functions Explain: Functional Explanation and Self-Reproducing Systems. Cambridge University Press, Cambridge.Google Scholar
  24. Mills IM (1994/95) Unity as unit. Metrologia 31:537–541.CrossRefGoogle Scholar
  25. Moore AW (1990) The Infinite. Routledge, London.Google Scholar
  26. Rosch E (1983) Prototype Classification and Logical Classification: The Two Systems. In Scholnik E (ed) New Trends in Cognitive Representations: Challenges to Piaget’s Theory. Lawrence Erlbaum Associates, Hillsdale N.J.Google Scholar
  27. SI (2006) The International System of Units (SI), 8th edition 2006, Bureau International des Poids et Mesures <http://www.bipm.org/en/si/si_brochure/>
  28. VIM (2006) International Vocabulary of Metrology—Basic and General Concepts and Associated Terms, 3rd edition. Final draft 2006-08-01 (JCGM/WG 2 Document N318 ).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.The Institute for Formal Ontology and Medical Information Science (IFOMIS)Saarland UniversitySaarbrückenGermany

Personalised recommendations