Advertisement

Comparison of spatial ion distributions from different ionization sources

  • Erik BunertEmail author
  • Ansgar T. Kirk
  • Oliver Käbein
  • Stefan Zimmermann
Original Research

Abstract

In order to optimize an ion mobility spectrometer (IMS) with respect to resolving power and sensitivity, the exact spatial ion density distribution generated by the used ionization source is of major interest. In this work, we investigate the two-dimensional (2D) spatial ion density distribution generated by a 63Ni source and the three-dimensional (3D) spatial ion density distributions generated by a radioactive 3H electron source, our non-radioactive electron source and an X-ray source. Therefore, we used an experimental setup consisting of the ionization source under investigation, an ionization region, a 5 mm short drift tube and a PCB Faraday detector segmented into stripe electrodes to measure the ion current. Repeating this measurement for different detector angles, the resulting 3D spatial ion density distribution can be calculated by image reconstruction. Furthermore, we varied the kinetic electron energy of our non-radioactive electron source in order to validate the simulated ion density distribution shown in previous work.

Keywords

Spatial ion density distribution Ion profiles Ion distribution APCI Ion generation Non-radioactive electron source X-ray-source Tritium source 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Cochems P, Runge M, Zimmermann S, Zimmermann S A miniaturized non-radioactive electron emitter for atmospheric pressure chemical ionization. 1131–1134Google Scholar
  2. 2.
    Cochems P, Runge M, Zimmermann S (2014) A current controlled miniaturized non-radioactive electron emitter for atmospheric pressure chemical ionization based on thermionic emission. Sensors Actuators A Phys 206:165–170CrossRefGoogle Scholar
  3. 3.
    Cochems P, Kirk AT, Bunert E, Runge M, Goncalves P, Zimmermann S (2015) Fast pulsed operation of a small non-radioactive electron source with continuous emission current control. Rev Sci Instrum 86(6):65102CrossRefGoogle Scholar
  4. 4.
    Reinecke T, Kirk AT, Heptner A, Niebuhr D, Bottger S, Zimmermann S (2016) A compact high-resolution X-ray ion mobility spectrometer. Rev Sci Instrum 87(5):53120CrossRefGoogle Scholar
  5. 5.
    Bunert E, Reinecke T, Kirk AT, Bohnhorst A, Zimmermann S (2018) Ion mobility spectrometer with orthogonal X-ray source for increased sensitivity. Talanta 185:537–541CrossRefGoogle Scholar
  6. 6.
    Heptner A, Angerstein N, Reinecke T, Bunert E, Kirk AT, Niedzwiecki I, Zimmermann S (2016) Improving the analytical performance of ion mobility spectrometer using a non-radioactive electron source. Int J Ion Mobil Spectrom 19(4):175–182CrossRefGoogle Scholar
  7. 7.
    Heptner A, Reinecke T, Angerstein N, Zimmermann S (2017) A novel ion selective gas sensor based on pulsed atmospheric pressure chemical ionization and ion-ion-recombination. Sensors and Actuators B: ChemicalGoogle Scholar
  8. 8.
    Karpas Z, Eiceman GA, Ewing RG, Algom A, Avida R, Friedman M, Matmor A, Shahal O (1993) Ion distribution profiles in the drift region of an ion mobility spectrometer. Int J Mass Spectrom Ion Process 127:95–104CrossRefGoogle Scholar
  9. 9.
    Davila SJ, Hadjar O, Eiceman GA, Eiceman GA (2013) Ion profiling in an ambient drift tube-ion mobility spectrometer using a high pixel density linear Array detector IonCCD. Anal Chem 85(14):6716–6722CrossRefGoogle Scholar
  10. 10.
    Sukumar H, Davila SJ, Eiceman GA (2014) Patterns of ion distributions from a cylindrical 63 Ni foil in an ion mobility spectrometer. Int J Ion Mobil Spectrom 17(3-4):139–145CrossRefGoogle Scholar
  11. 11.
    Guo K, Ni K, Song X, Li K, Tang B, Yu Q, Qian X, Wang X (2018) Ion distribution profiling in an ion mobility spectrometer by laser-induced fluorescence. Anal Chem 90(7):4514–4520CrossRefGoogle Scholar
  12. 12.
    Kirk AT, Allers M, Cochems P, Langejuergen J, Zimmermann S (2013) A compact high resolution ion mobility spectrometer for fast trace gas analysis. Analyst 138(18):5200–5207CrossRefGoogle Scholar
  13. 13.
    Kirk AT, Zimmermann S (2014) Bradbury-Nielsen vs. field switching shutters for high resolution drift tube ion mobility spectrometers. Int J Ion Mobil Spectrom 17(3-4):131–137CrossRefGoogle Scholar
  14. 14.
    Porter FT (1959) Beta decay energy of tritium. Phys Rev 115(2):450–453CrossRefGoogle Scholar
  15. 15.
    Bunert E, Heptner A, Reinecke T, Kirk AT, Zimmermann S (2017) Shutterless ion mobility spectrometer with fast pulsed electron source. Rev Sci Instrum 88(2):24102CrossRefGoogle Scholar
  16. 16.
    Preiss IL, Fink RW, Robinson BL (1957) The beta spectrum of carrier-free Ni63. J Inorg Nucl Chem 4(5-6):233–236CrossRefGoogle Scholar
  17. 17.
    Hetherington DW, Graham RL, Lone MA, Geiger JS, Lee-Whiting GE, Hetherington DW, Graham RL, Lone MA, Geiger JS, AGE L-W (1987) Upper limits on the mixing of heavy neutrinos in the beta decay of Ni63. Phys Rev C 36:1504–1513CrossRefGoogle Scholar
  18. 18.
    Kirk AT, Zimmermann S (2015) Pushing a compact 15 cm long ultra-high resolution drift tube ion mobility spectrometer with R = 250 to R = 425 using peak deconvolution. Int J Ion Mobil Spectrom 18(1-2):17–22CrossRefGoogle Scholar
  19. 19.
    Cochems P, Kirk AT, Zimmermann S (2014) In-circuit-measurement of parasitic elements in high gain high bandwidth low noise transimpedance amplifiers. Rev Sci Instrum 85(12):124703CrossRefGoogle Scholar
  20. 20.
    Oliveira EF, Melo SB, Dantas CC, Vasconcelos DAA, Cadiz LF (2011) Comparison among tomographic reconstruction algorithms with a limited data. International Nuclear Atlantic ConferenceGoogle Scholar
  21. 21.
    Kak AC, Slaney M (2001) Principles of computerized tomographic imaging. Society for Industrial and Applied MathematicsGoogle Scholar
  22. 22.
    Morozov A, Heindl T, Skrobol C, Wieser J, Krücken R, Ulrich A (2008) Transmission of ~10 keV electron beams through thin ceramic foils: measurements and Monte Carlo simulations of electron energy distribution functions. Eur Phys J D 48(3):383–388CrossRefGoogle Scholar
  23. 23.
    Wieser J, Murnick DE, Ulrich A, Huggins HA, Liddle A, Brown WL (1997) Vacuum ultraviolet rare gas excimer light source. Rev Sci Instrum 68(3):1360–1364CrossRefGoogle Scholar
  24. 24.
    Eiceman GA, Karpas Z, Hill HH (2013) Ion mobility spectrometry. 3rd ed. CRC PressGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement TechnologyLeibniz University HannoverHannoverGermany

Personalised recommendations