Advertisement

FAIMS-MS-IR spectroscopy workflow: a multidimensional platform for the analysis of molecular isoforms

  • Baptiste Schindler
  • Agathe Depraz Depland
  • Gina Renois-Predelus
  • Gabriel Karras
  • Bruno Concina
  • Gulabi Celep
  • Jacques Maurelli
  • Vincent Loriot
  • Eric Constant
  • Richard Bredy
  • Christian Bordas
  • Franck Lépine
  • Isabelle Compagnon
Original Research

Abstract

An original workflow allowing inline FAIMS separation, electrospray ionization, mass analysis and ion spectroscopy (IRMPD: InfraRed Multiple Photon Dissociation) is presented for multidimensional molecular analysis. This new instrument consists of an ultraFAIMS (Owlstone) device interfaced to a linear ion trap (LTQ XL Thermo Scientific) which was modified for IRMPD spectroscopy. Two modes of operation are demonstrated on an isomeric mixture of paracetamol and 2-phenylglycine. In the first mode a FAIMS (high-Field Asymmetric waveform Ion Mobility Spectrometry) separation of the isomers is performed with a static compensation field for mass- and isomer- selective ion spectroscopy. In the second mode, the compensation field is scanned while the ions are irradiated at a fixed wavenumber. The advantages of this workflow as compared to traditional FAIMS-MS and IRMPD spectroscopy are described. The potential of the two modes for molecular spectroscopy and analytical applications, in particular the new “omics” are discussed.

Keywords

FAIMS Isomers Ion spectroscopy Multidimensional analysis Structural characterization 

Notes

Acknowledgements

This work was supported by Institut Universitaire de France, ANR Circé (grant ANR-16-CE30-0012) the Fédération de Recherche André Marie Ampère and the Glycophysics Network (web: http://glyms.univ-lyon1.fr) funded by the French Agence Nationale de la Recherche (grant ANR-2015-MRSEI-0010).

References

  1. 1.
    Smith RW, Toutoungi DE, Reynolds JC et al (2013) Enhanced performance in the determination of ibuprofen 1-β-O-acyl glucuronide in urine by combining high field asymmetric waveform ion mobility spectrometry with liquid chromatography-time-of-flight mass spectrometry. J Chromatogr A 1278:76–81.  https://doi.org/10.1016/j.chroma.2012.12.065 CrossRefGoogle Scholar
  2. 2.
    Arthur KL, Turner MA, Reynolds JC, Creaser CS (2017) Increasing peak capacity in nontargeted Omics applications by combining full scan field asymmetric waveform ion mobility spectrometry with liquid chromatography–mass spectrometry. Anal Chem 89:3452–3459.  https://doi.org/10.1021/acs.analchem.6b04315 CrossRefGoogle Scholar
  3. 3.
    Guevremont R (2004) High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry. J Chromatogr A 1058:3–19.  https://doi.org/10.1016/j.chroma.2004.08.119 CrossRefGoogle Scholar
  4. 4.
    Kolakowski BM, Mester Z (2007) Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Analyst 132:842.  https://doi.org/10.1039/b706039d CrossRefGoogle Scholar
  5. 5.
    Kanu AB, Dwivedi P, Tam M et al (2008) Ion mobility-mass spectrometry. J Mass Spectrom 43:1–22.  https://doi.org/10.1002/jms.1383 CrossRefGoogle Scholar
  6. 6.
    Winkler W, Huber W, Vlasak R, Allmaier G (2011) Positive and negative electrospray ionisation travelling wave ion mobility mass spectrometry and low-energy collision-induced dissociation of sialic acid derivatives: ESI travelling wave IM-MS and low-energy CID of sialic acid derivatives. Rapid Commun Mass Spectrom 25:3235–3244.  https://doi.org/10.1002/rcm.5217 CrossRefGoogle Scholar
  7. 7.
    Smith RW, Cox LB, Yudin A et al (2015) Rapid determination of N-methylpyrrolidine in cefepime by combining direct infusion electrospray ionisation-time-of-flight mass spectrometry with field asymmetric waveform ion mobility spectrometry. Anal Methods 7:34–39.  https://doi.org/10.1039/C4AY02026J CrossRefGoogle Scholar
  8. 8.
    Da Costa C, Turner M, Reynolds JC et al (2016) Direct analysis of oil additives by high-field asymmetric waveform ion mobility spectrometry-mass spectrometry combined with electrospray ionization and desorption electrospray ionization. Anal Chem 88:2453–2458.  https://doi.org/10.1021/acs.analchem.5b04595 CrossRefGoogle Scholar
  9. 9.
    Feider CL, Elizondo N, Eberlin LS (2016) Ambient ionization and FAIMS mass spectrometry for enhanced imaging of multiply charged molecular ions in biological tissues. Anal Chem 88:11533–11541.  https://doi.org/10.1021/acs.analchem.6b02798 CrossRefGoogle Scholar
  10. 10.
    Arthur KL, Turner MA, Brailsford AD et al (2017) Rapid analysis of anabolic steroid metabolites in urine by combining field asymmetric waveform ion mobility spectrometry with liquid chromatography and mass spectrometry. Anal Chem 89:7431–7437.  https://doi.org/10.1021/acs.analchem.7b00940 CrossRefGoogle Scholar
  11. 11.
    Polfer NC, Oomens J (2009) Vibrational spectroscopy of bare and solvated ionic complexes of biological relevance. Mass Spectrom Rev 28:468–494.  https://doi.org/10.1002/mas.20215 CrossRefGoogle Scholar
  12. 12.
    Patrick AL, Cismesia AP, Tesler LF, Polfer NC (2017) Effects of ESI conditions on kinetic trapping of the solution-phase protonation isomer of p -aminobenzoic acid in the gas phase. Int J Mass Spectrom 418:148–155.  https://doi.org/10.1016/j.ijms.2016.09.022 CrossRefGoogle Scholar
  13. 13.
    Schindler B, Barnes L, Gray CJ et al (2017) IRMPD spectroscopy sheds new (infrared) light on the sulfate pattern of carbohydrates. J Phys Chem A 121:2114–2120.  https://doi.org/10.1021/acs.jpca.6b11642 CrossRefGoogle Scholar
  14. 14.
    Nei Y -w, Hallowita N, Steill JD et al (2013) Infrared multiple photon dissociation action spectroscopy of deprotonated DNA mononucleotides: gas-phase conformations and energetics. J Phys Chem A 117:1319–1335.  https://doi.org/10.1021/jp3077936 CrossRefGoogle Scholar
  15. 15.
    Rijs AM, Oomens J (2014) IR spectroscopic techniques to study isolated biomolecules. In: Rijs AM, Oomens J (eds) Gas-phase IR spectroscopy and structure of biological molecules. Springer International Publishing, Cham, pp 1–42Google Scholar
  16. 16.
    Martens J, Grzetic J, Berden G, Oomens J (2016) Structural identification of electron transfer dissociation products in mass spectrometry using infrared ion spectroscopy. Nat Commun 7:11754.  https://doi.org/10.1038/ncomms11754 CrossRefGoogle Scholar
  17. 17.
    Martens J, Koppen V, Berden G et al (2017) Combined liquid chromatography-infrared ion spectroscopy for identification of Regioisomeric drug metabolites. Anal Chem 89:4359–4362.  https://doi.org/10.1021/acs.analchem.7b00577 CrossRefGoogle Scholar
  18. 18.
    Wattjes J, Schindler B, Trombotto S et al (2017) Discrimination of patterns of N-acetylation in chitooligosaccharides by gas phase IR spectroscopy integrated to mass spectrometry. Pure Appl Chem  https://doi.org/10.1515/pac-2017-0110
  19. 19.
    Warnke S, Seo J, Boschmans J et al (2015) Protomers of benzocaine: solvent and permittivity dependence. J Am Chem Soc 137:4236–4242.  https://doi.org/10.1021/jacs.5b01338 CrossRefGoogle Scholar
  20. 20.
    Seo J, Hoffmann W, Warnke S et al (2016) Retention of native protein structures in the absence of solvent: a coupled ion mobility and spectroscopic study. Angew Chem Int Ed 55:14173–14176.  https://doi.org/10.1002/anie.201606029 CrossRefGoogle Scholar
  21. 21.
    Hernandez O, Isenberg S, Steinmetz V et al (2015) Probing mobility-selected saccharide isomers: selective ion–molecule reactions and wavelength-specific IR activation. J Phys Chem A 119:6057–6064.  https://doi.org/10.1021/jp511975f CrossRefGoogle Scholar
  22. 22.
    Purves RW, Guevremont R (1999) Electrospray ionization high-field asymmetric waveform ion mobility spectrometry−mass spectrometry. Anal Chem 71:2346–2357.  https://doi.org/10.1021/ac981380y CrossRefGoogle Scholar
  23. 23.
    Shvartsburg AA, Smith RD, Wilks A et al (2009) Ultrafast differential ion mobility spectrometry at extreme electric fields in multichannel microchips. Anal Chem 81:6489–6495.  https://doi.org/10.1021/ac900892u CrossRefGoogle Scholar
  24. 24.
    Voronina L, Masson A, Kamrath M et al (2016) Conformations of Prolyl–peptide bonds in the Bradykinin 1–5 fragment in solution and in the gas phase. J Am Chem Soc 138:9224–9233.  https://doi.org/10.1021/jacs.6b04550 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Baptiste Schindler
    • 1
  • Agathe Depraz Depland
    • 1
  • Gina Renois-Predelus
    • 1
  • Gabriel Karras
    • 1
  • Bruno Concina
    • 1
  • Gulabi Celep
    • 1
  • Jacques Maurelli
    • 1
  • Vincent Loriot
    • 1
  • Eric Constant
    • 1
  • Richard Bredy
    • 1
  • Christian Bordas
    • 1
  • Franck Lépine
    • 1
  • Isabelle Compagnon
    • 1
    • 2
  1. 1.CNRS, Institut Lumière MatièreUniv Lyon, Université Claude Bernard Lyon 1VilleurbanneFrance
  2. 2.Institut Universitaire de France IUFParisFrance

Personalised recommendations