Advertisement

Structural studies of metal ligand complexes by ion mobility-mass spectrometry

  • Victoria E. Wright
  • Fernando Castro-Gómez
  • Ewa Jurneczko
  • James C. Reynolds
  • Andrew Poulton
  • Steven D. R. Christie
  • Perdita Barran
  • Carles Bo
  • Colin S. CreaserEmail author
Original Research

Abstract

Collision cross sections (CCS) have been measured for three salen ligands, and their complexes with copper and zinc using travelling-wave ion mobility-mass spectrometry (TWIMS) and drift tube ion mobility-mass spectrometry (DTIMS), allowing a comparative size evaluation of the ligands and complexes. CCS measurements using TWIMS were determined using peptide and TAAH calibration standards. TWIMS measurements gave significantly larger CCS than DTIMS in helium, by 9 % for TAAH standards and 3 % for peptide standards, indicating that the choice of calibration standards is important in ensuring the accuracy of TWIMS-derived CCS measurements. Repeatability data for TWIMS was obtained for inter- and intra-day studies with mean RSDs of 1.1 % and 0.7 %, respectively. The CCS data obtained from IM-MS measurements are compared to CCS values obtained via the projection approximation, the exact hard spheres method and the trajectory method from X-ray coordinates and modelled structures using density functional theory (DFT) based methods.

Keywords

Ion mobility-mass spectrometry Collision cross sections Triwave Organometallic complexes Modelling Drift tube ion mobility spectrometry 

Notes

Acknowledgments

We thank Loughborough University for the award of a studentship to V.E.W and AstraZeneca for financial support. Research support from the ICIQ Foundation, Spanish Ministerio de Economia y Competitividad (MINECO grant CTQ2011-29054-C02-02) and the Generalitat de Catalunya (2009SGR-00259) is gratefully acknowledged. Waters and the BBSRC are acknowledged for the award of a strategic CASE studentship to E.J. The BMSS (British Mass Spectrometry Society) is thanked for proving the funds for a pipette puller enabling the nanospray experiments on the DTIMS.

Supplementary material

12127_2013_122_MOESM1_ESM.pdf (147 kb)
ESM 1 (PDF 146 kb)

References

  1. 1.
    Creaser CS, Bramwell CJ, Noreen S, Hill CA, Thomas CL (2004) Analyst 129:984–994CrossRefGoogle Scholar
  2. 2.
    Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH (2004) Rapid Commun Mass Spectrom 18:2401–2414CrossRefGoogle Scholar
  3. 3.
    Scarff CA, Snelling JR, Knust MM, Wilkins CL, Scrivens JH (2012) J Am Chem Soc 134:9193–9198CrossRefGoogle Scholar
  4. 4.
    Wassvik C, Mortishire-Smith RJ, Tresadern G, Campuzano I, Claereboudt J (2011) Rapid Commun Mass Spectrom 25:3497–3503CrossRefGoogle Scholar
  5. 5.
    Campuzano I, Bush MF, Robinson CV, Beumont C, Richardson K, Kim H, Kim HI (2012) Anal Chem 84:1026–1033CrossRefGoogle Scholar
  6. 6.
    Scarff CA, Thalassinos K, Hilton GR, Scrivens JH (2008) Rapid Commun Mass Spectrom 22:3297–3304CrossRefGoogle Scholar
  7. 7.
    Thalassinos K, Grabenaur M, Slade SE, Hilton GR, Bowers MT, Scrivens JH (2009) Anal Chem 81:248–254CrossRefGoogle Scholar
  8. 8.
    Salbo R, Bush MF, Naver H, Campuzano I, Robinson CV, Pettersson I, Jørgensen TJD, Haselmann KF (2012) Rapid Commun Mass Spectrom 26:1181–1193CrossRefGoogle Scholar
  9. 9.
    Michaelevski I, Eisenstein M, Sharon M (2010) Anal Chem 82:9484–9491CrossRefGoogle Scholar
  10. 10.
    Atmanene C, Petiot-Bécard S, Zeyer D, Dorsselaer AV, Hannah VV, Sanlier-Cianférani S (2012) Anal Chem 84:4703–4710CrossRefGoogle Scholar
  11. 11.
    Knapman TW, Berryman JT, Campuzano I, Harris SA, Ashcroft AE (2010) Int J Mass Spectrom 298:17–23CrossRefGoogle Scholar
  12. 12.
    Williams JP, Bugarcic T, Habtemariam A, Giles K, Campuzano I, Rodger PM, Sadler PJ (2009) J Am Soc Mass Spectrom 20:1119–1122CrossRefGoogle Scholar
  13. 13.
    Williams JP, Lough JA, Campuzano I, Richardson K, Sadler PJ (2009) Rapid Commun Mass Spectrom 23:3563–3569CrossRefGoogle Scholar
  14. 14.
    Wyttenbach T, Batka JJ, Gidden J, Bowers MT (1999) Int J Mass Spectrom 193:143–152CrossRefGoogle Scholar
  15. 15.
    Wyttenbach T, Witt M, Bowers MT (2000) J Am Chem Soc 122:3458–3464CrossRefGoogle Scholar
  16. 16.
    Clowers BH, Hill HH Jr (2006) J Mass Spectrom 41:339–351CrossRefGoogle Scholar
  17. 17.
    Moision RM, Armentrout PB (2006) J Phys Chem A 2:3933–3946CrossRefGoogle Scholar
  18. 18.
    Taraszka JA, Li J, Clemmer DE (2000) J Phys Chem B 104:4545–4551CrossRefGoogle Scholar
  19. 19.
    Leavell MD, Gaucher SP, Leary JA, Taraszka JA, Clemmer DE (2002) J Am Soc Mass Spectrom 13:284–293CrossRefGoogle Scholar
  20. 20.
    Baker ES, Manard MJ, Gidden J, Bowers MT (2005) J Phys Chem B 109:4808–4810Google Scholar
  21. 21.
    Wyttenbach T, Liu DF, Bowers MT (2008) J Am Chem Soc 130:5993–6000CrossRefGoogle Scholar
  22. 22.
    Berezovskaya Y, Armstrong CT, Boyle AL, Porrini M, Woolfson DN, Barran PE (2011) Chem Commun 47:412–414CrossRefGoogle Scholar
  23. 23.
    Chepelin O, Ujma J, Barran PE, Lusby PJ (2012) Angew Chem Int 51:4194–4197CrossRefGoogle Scholar
  24. 24.
    Gidden J, Bowers MT, Jackson AT, Scrivens JH (2002) J Am Chem Soc 13:499–505Google Scholar
  25. 25.
  26. 26.
    Smith DP, Knapman TW, Campuzano I, Malham RW, Berryman JT, Radford SE, Ashcroft AE (2009) Eur J Mass Spectrom 15:113–130CrossRefGoogle Scholar
  27. 27.
    McCullough BJ, Kalapothakis J, Eastwood H, Kemper P, MacMillan D, Taylor K, Dorin J, Barran PE (2008) Anal Chem 80:6336–6344CrossRefGoogle Scholar
  28. 28.
    Von Helden G, Hsu MT, Gotts N, Bowers MT (1993) J Phys Chem 97:8182–8192CrossRefGoogle Scholar
  29. 29.
    Shvartsburg AA, Jarrold MF (1996) Chem Phys Lett 261:86–91CrossRefGoogle Scholar
  30. 30.
    Mesleh MF, Hunter JM, Shvartsburg AA, Schatz GC, Jarrold MF (1996) J Phys Chem 100:16082–16086CrossRefGoogle Scholar
  31. 31.
    Siu C, Guo Y, Saminathan IS, Hopkinson AC, Siu KWM (2010) J Phys Chem 114:1204–1212Google Scholar
  32. 32.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc, WallingfordGoogle Scholar
  33. 33.
    Valentine SJ, Conterman AE, Clemmer DE (1999) J Am Soc Mass Spectrom 10:1188–1211CrossRefGoogle Scholar
  34. 34.
    Jurneczko EJ, Kalapothakis J, Campuzano IDG, Morris M, Barran PE (2012) Anal Chem 84:8524–8531CrossRefGoogle Scholar
  35. 35.
    Morsa D, Gabelica V, De Pauw E (2011) Anal Chem 83:5775–5782CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Victoria E. Wright
    • 1
  • Fernando Castro-Gómez
    • 2
  • Ewa Jurneczko
    • 3
  • James C. Reynolds
    • 1
  • Andrew Poulton
    • 4
  • Steven D. R. Christie
    • 1
  • Perdita Barran
    • 3
  • Carles Bo
    • 2
    • 5
  • Colin S. Creaser
    • 1
    Email author
  1. 1.Centre for Analytical Science, Department of ChemistryLoughborough UniversityLoughboroughUK
  2. 2.Institute of Chemical Research of Catalonia (ICIQ)TarragonaSpain
  3. 3.School of ChemistryUniversity of EdinburghEdinburghUK
  4. 4.Pharmaceutical DevelopmentAstraZenecaMacclesfieldUK
  5. 5.Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations