Analytical description of IMS-signals

Technical Report

Abstract

Ion mobility spectrometry (IMS) is widely used to detect chemical warfare agents, illegal drugs or explosives. In such cases often the occurrence of single, well known analytes or rather small groups of analytes is considered. To retrieve analytes in rather complex matrices like human breath it becomes essential to describe all analytes, known and unknown. Therefore, a mathematical description of the peak shape of well known analytes–including their concentration profiles–and the shapes of unknown or overlapping peaks by a minimum number of parameters could significantly improve the recognition and quantification of signals in IMS-chromatograms. In the following, a function is presented which describes the theoretical surface of a peak on a given position and height. In addition, the peak-function method can be applied for decomposition of overlapping signals within IMS-chromatograms, which furthermore enables a direct determination of the volume of each peak for an accurate quantification.

Keywords

Ion mobility spectrometry, IMS Multi-capillary column, MCC Peak shape Drift time Retention time Decomposition Quantification Concentration profile Peak function Overlapped peaks 

References

  1. 1.
    Rearden P, Harrington PB (2005) Rapid screening of precursor and degradation products of chemical warfare agents in soil by solid-phase microextraction ion mobility spectrometry (SPME-IMS). Analytica Chimica Acta 545:13–20CrossRefGoogle Scholar
  2. 2.
    Steiner WE, English WA, Hill HH (2005) Separation efficiency of a chemical warfare agent simulant in an atmospheric pressure ion mobility time-of-flight mass spectrometer (IM(tof) MS). Analytica Chimica Acta 532:37–45CrossRefGoogle Scholar
  3. 3.
    Kolakowski BM, D'Agostino PA, Chenier C, Mester Z (2007) Analysis of chemical warfare agents in food products by atmospheric pressure ionization-high field asymmetric waveform ion mobility spectrometry-mass spectrometry. Analytical Chemistry 79:8257–8265CrossRefGoogle Scholar
  4. 4.
    McHugh VM et al (2003) Using an array of ion mobility spectrometers for ground truth measurements in field tests involving releases of chemical warfare agent surrogates. International Journal for Ion Mobility Spectrometry 6:49–52Google Scholar
  5. 5.
    Sielemann S, Baumbach JI, Schmidt H (2002) IMS with non radioactive ionization sources suitable to detect chemical warfare agent simulation substances. International Journal for Ion Mobility Spectrometry 5:143–148Google Scholar
  6. 6.
    Asbury GR, Wu C, Siems WF, Hill HH (2000) Separation and identification of some chemical warfare degradation products using electrospray high resolution ion mobility spectrometry with mass selected detection. Analytica Chimica Acta 404:273–283CrossRefGoogle Scholar
  7. 7.
    Lawrence AH (1986) Ion mobility spectrometry/mass spectrometry of some prescription and illicit drugs. Analytical Chemistry 58:1269–1272CrossRefGoogle Scholar
  8. 8.
    Eatherton RL, Morrissey MA, Hill HH (1988) Comparison of ion mobility constants of selected drug after capillary gas chromatography and capillary supercritical fluid chromatography. Analytical Chemistry 60:2240–2243CrossRefGoogle Scholar
  9. 9.
    Lawrence AH (1989) Characterization of benzodiazepine drugs by ion mobility spectrometry. Analytical Chemistry 61:343–349CrossRefGoogle Scholar
  10. 10.
    Nanji AA, Lawrence AH, Mikhael NZ (1987) Use of skin surface sampling and ion mobility spectrometry as a preliminary screening method for drug detection in an emergency room. Journal of Toxicology - Clinical Toxicology 25:501–515Google Scholar
  11. 11.
    Eatherton RL, Morrissey MA, Hill HH (1988) Comparison of ion mobility constants of selected drugs after capillary gas chromatography and capillary supercritical fluid chromatography. Analytical Chemistry 60:2240–2243CrossRefGoogle Scholar
  12. 12.
    Lawrence AH (1987) Detection of drug residues on the hands of subjects by surface sampling and ion mobility spectrometry. Forensic Science International 34:73–83CrossRefGoogle Scholar
  13. 13.
    Fytche LM, Hupe M, Kovar JB, Pilon P (1992) Ion mobility spectrometry of drugs of abuse in customs scenarios: concentration and temperature study. Journal of Forensic Sciences 37:1550–1566Google Scholar
  14. 14.
    Kanu AB, Hill HH (2007) Identity confirmation of drugs and explosives in ion mobility spectrometry using a secondary drift gas. Talanta 73:692–699CrossRefGoogle Scholar
  15. 15.
    Fytche LM, Hupe M, Kovar JB, Pilon P (1992) Ion Mobility Spectrometry of Drugs of Abuse in Customs Scenarios - Concentration and Temperature Study. Journal of Forensic Sciences 37:1550–1566Google Scholar
  16. 16.
    Cohen MJ, Wernlund RF, Stimac RM (1984) The ion mobility spectrometer for high explosive vapor detection. Journal of the Institute of Nuclear Materials Management XIII:220Google Scholar
  17. 17.
    Buxton TL, Harrington PDB (2001) Rapid mutivariate curve resolution applied to identification of explosives by ion mobility spectrometry. Analytica Chimica Acta 434:269–282CrossRefGoogle Scholar
  18. 18.
    Fricano L et al (2001) A novel portal design for rapid real tme detection of explosives` vapors and particles. International Journal for Ion Mobility Spectrometry 3:69Google Scholar
  19. 19.
    Pfeifer KB, Sanchez RC (2002) Miniaturized ion mobility spectrometer system for explosives and contraband detection. International Journal for Ion Mobility Spectrometry 5:63–66Google Scholar
  20. 20.
    Eiceman GA, Stone JA (2004) Ion mobility spectrometers in national defense. Analytical Chemistry 76:390A–397AGoogle Scholar
  21. 21.
    Perr JM, Furton KG, Almirall JR (2005) Solid phase microextraction ion mobility spectrometer interface for explosive and taggant detection. Journal of Separation Science 28:177–183CrossRefGoogle Scholar
  22. 22.
    Vautz W, Baumbach JI (2008) Exemplar application of multi-capillary column ion mobility spectrometry for biological medical purpose. International Journal for Ion Mobility Spectrometry 11:35–42CrossRefGoogle Scholar
  23. 23.
    Amann A, Spanel P, Smith D (2007) Breath analysis: the approach towards clinical applications. Mini-Reviews in Medicinal Chemistry 7:115–129CrossRefGoogle Scholar
  24. 24.
    Baumbach JI, Vautz W, Ruzsanyi V, Freitag L (2005) In: Anmann A, Smith D (eds) Breath analysis for clinical diagnosis and therapeutic monitoring. World Scientific, Singapore, pp 53–66CrossRefGoogle Scholar
  25. 25.
    Baumbach J et al (2007) IMS2–An integrated medical software system for early lung cancer detection using ion mobility spectrometry data of human breath. Journal of Integrative Bioinformatics 4(75):71–12Google Scholar
  26. 26.
    Baumbach, J.I. Ion Mobility Spectrometry coupled with Multi-Capillary Columns for Metabolic Profiling of Human Breath. Journal of Breath Research (2009).Google Scholar
  27. 27.
    Westhoff, M. et al. Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of lung cancer patients – Results of a pilot study. Thorax 64 (2008).Google Scholar
  28. 28.
    Davies AN, Baumbach JI (2008) Early lung cancer diagnostics by ion mobility spectrometry data handling. Spectroscopy Europe 20:18–21Google Scholar
  29. 29.
    Westhoff M, Litterst P, Freitag L, Baumbach JI (2007) Ion mobility spectrometry in the diagnosis of sarcoidosis: results of a feasibility study. Journal of Physiology and Pharmacology 58:739–751Google Scholar
  30. 30.
    Westhoff M et al (2006) Ion mobility spectrometry – a new method in the diagnostic approach to sarcoidosis? – Preliminary data. European Respiratory Journal 28:111SGoogle Scholar
  31. 31.
    Baumbach JI, Westhoff M (2006) Ion mobility spectrometry to detect lung cancer and airway infections. Spectroscopy Europe 18:22–27Google Scholar
  32. 32.
    Rauch, P.J., Harrington, P. & Davis, D.M. Ion Mobility Spectrometer Measures Food Flavor Freshness. Food Technol., 83–85 (1996).Google Scholar
  33. 33.
    Karpas Z, Tilman B, Gdalevsky R, Lorber A (2002) Determination of volatile biogenic amines in muscle food products by ion mobility spectrometry. Analytica Chimica Acta 463:155–163CrossRefGoogle Scholar
  34. 34.
    Vautz W et al (2006) Ion mobility spectrometry for food quality and safety. Food Additives and Contaminants 23:1064–1073CrossRefGoogle Scholar
  35. 35.
    Raatikainen O, Hiltunen T, Törmikoski K, Hyvönen P, Paakkanen H (2007) Ion mobility spectrometry based gas detector MGD-1: applications to food process monitoring and food quality assessment. International Journal for Ion Mobility Spectrometry 10:38–43Google Scholar
  36. 36.
    Maddula, S., Blank, L., Schmid, A. & Baumbach, J.I. Detection of volatile metabolites of Escherichia coli by multi capillary column coupled ion mobility spectrometry. Analytical and Bioanalytical Chemistry (2009).Google Scholar
  37. 37.
    Baumbach JI (2006) Process analysis using ion mobility spectrometry. Analytical and Bioanalytical Chemistry 384:1059–1070CrossRefGoogle Scholar
  38. 38.
    Irie T, Mitsui Y, Hasumi K (1992) A drift tube for monitoring ppb trace water. Japanese Journal of Applied Physics 31:2615Google Scholar
  39. 39.
    Sielemann, S. et al. in Field Screening Europe. (eds. J. Gottlieb, H. Hötzel & K. Huck)Karlsruhe; 1997).Google Scholar
  40. 40.
    Xie Z, Sielemann S, Schmidt H, Baumbach JI (2001) A novel method for the detection of MTBE: ion mobility spectrometry coupled to multi capillary column. International Journal for Ion Mobility Spectrometry 4:77–83Google Scholar
  41. 41.
    Borsdorf H et al (2001) Rapid on-site determination of chlorobenzene in water samples using ion mobility spectrometry. Analytica Chimica Acta 440:63–70CrossRefGoogle Scholar
  42. 42.
    Dion HM, Ackermann LK, Hill HHJ (2002) Detection of ionorganic ions from water by electrospray ionization-ion mobility spectrometry. Talanta 57:1161–1171CrossRefGoogle Scholar
  43. 43.
    Carrico JP et al (1986) Chemical detection and alarm for hazardous chemicals. Am. Lab. 155–7:159–163Google Scholar
  44. 44.
    Roehl RE (1991) Environmental and process applications for ion mobility spectrometry. Applied Spectroscopy Reviews 26:1–57CrossRefGoogle Scholar
  45. 45.
    Kolehmainen M, Rönkkö P, Raatikainen O (2003) Monitoring of yeast fermentation by ion mobility spectrometry measurement and data visualisation with Self-Organizing Maps. Analytica Chimica Acta 484:93–100CrossRefGoogle Scholar
  46. 46.
    Vautz, W., Mauntz, W., Engell, S. & Baumbach, J.I. Monitoring of Emulsion Polymerisation Processes using Ion Mobility Spectrometry–A Pilot Study. Macromolecular Reaction Engineering 3 (2009).Google Scholar
  47. 47.
    Prasad, S. et al. Analysis of bacteria by pyrolysis gas chromatography-differential mobility spectrometry and isolation of chemical components with a dependence on growth temperature. Analyst (Cambridge, U. K.) FIELD Full Journal Title:Analyst (Cambridge, United Kingdom) 132, 1031–1039 (2007).Google Scholar
  48. 48.
    Shvartsburg, A.A., Tang, K. & Smith, R.D. 57pp. ((Battelle Memorial Institute, USA). WO; 2006).Google Scholar
  49. 49.
    Shvartsburg AA et al (2006) Field asymmetric waveform ion mobility spectrometry studies of proteins: Dipole alignment in ion mobility spectrometry? Journal of Physical Chemistry B 110:21966–21980CrossRefGoogle Scholar
  50. 50.
    Shvartsburg AA et al (2006) Field asymmetric waveform ion mobility spectrometry studies of proteins: dipole alignment in ion mobility spectrometry? Journal of Physical Chemistry B FIELD Full Journal Title:Journal of Physical Chemistry B 110:21966–21980Google Scholar
  51. 51.
    Harrington P, Reese ES, Rauch PJ (1997) interactive self-modeling mixture analysis of ion mobility spectra. Applied Spectroscopy 51:808–816CrossRefGoogle Scholar
  52. 52.
    Harrington PB, Buxton TL, Chen G (2001) Classification of bacteria by thermal methylation hydrolysis ion mobility spectrometry using SIMPLISMA and multidimensional wavelet compression. International Journal for Ion Mobility Spectrometry 4(2):148–151Google Scholar
  53. 53.
    Harrington, P.B., Rauch, P.J., Tong, J.Y. & Davis, D.M. Chemometric Tools for Advantageous Use of Dynamic IMS Data. Proc. 6th Int. Workshop Ion Mobility Spectrom., 281–303 (1998).Google Scholar
  54. 54.
    Harrington PDB, Rauch PJ, Cai C (2001) Multivariate Curve Resolution of Wavelet and Fourier Compressed Spectra. Analytical Chemistry 73:3247–3256CrossRefGoogle Scholar
  55. 55.
    Harrington, P.D.B., Schmitt, N.C., Atkinson, D.A. & Ewing, R.G. AGFD-1922002).Google Scholar
  56. 56.
    Bader S, Urfer W, Baumbach J (2005) Processing ion mobility spectrometry data to characterize group differences in a multiple class comparison. International Journal for Ion Mobility Spectrometry 8:1–4Google Scholar
  57. 57.
    Bader S, Urfer W, Baumbach JI (2007) Reduction of ion mobility spectrometry data by clustering characteristic peak structures. Journal of Chemometrics 20:128–135CrossRefGoogle Scholar
  58. 58.
    Bödeker B, Vautz W, Baumbach JI (2008) Peak finding and referencing in MCC/IMS–data. International Journal for Ion Mobility Spectrometry 11:83–88CrossRefGoogle Scholar
  59. 59.
    Bödeker B, Vautz W, Baumbach JI (2008) Peak comparison in MCC/IMS–Data–Searching for potential biomarkers in human breath data. International Journal for Ion Mobility Spectrometry 11:89–93CrossRefGoogle Scholar
  60. 60.
    Bödeker B, Vautz W, Baumbach JI (2008) Visualisation of MCC/IMS–Data. International Journal for Ion Mobility Spectrometry 11:77–82CrossRefGoogle Scholar
  61. 61.
    Bader S, Urfer W, Baumbach JI (2008) Preprocessing of ion mobility spectra by lognormal detailing and wavelet transform. International Journal for Ion Mobility Spectrometry 11:43–50CrossRefGoogle Scholar
  62. 62.
    Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics 11:431–441CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of MetabolomicsISAS-Institute for Analytical SciencesDortmundGermany

Personalised recommendations