Ion mobility spectra of cyclic and aliphatic hydrocarbons with different substituents

Original Research

Abstract

We investigated the influence of structural differences on the ionization pathways and drift behavior in ion mobility spectrometry for cyclic and aliphatic hydrocarbons with different functional groups. The sets of cyclic and aliphatic compounds had an identical mass or a mass difference of 2 Da. Therefore, mass effects can be neglected during the investigation of these compounds. Depending on the functional group, considerable differences were found in the detectable concentration ranges and in the number and position of product ion peaks in ion mobility spectra. The spectra of chlorinated compounds and hydrocarbons show no correlation to their calculated collisional cross sections. Differences in collisional cross section between cyclic and aliphatic substances investigated were only found to influence the drift times detected for amines and aliphatic aldehydes while complex ion chemistry was observed for the other substances.

Keywords

Ion mobility spectrometry (IMS) Atmospheric pressure ionization (API) 

References

  1. 1.
    Lopez-Avilia V, Hill HH (1997) Anal Chem 69:289RCrossRefGoogle Scholar
  2. 2.
    Turner RB, Brokenshire JL (1994) Trends in Anal Chem 13:275CrossRefGoogle Scholar
  3. 3.
    Eiceman GA, Stone JA (2004) Anal Chem 76:391AGoogle Scholar
  4. 4.
    Sohn H, Steinhanses J (1998) Int J for Ion Mobility Spectrom. 1:1Google Scholar
  5. 5.
    Eiceman GA, Fleischer ME, Leasure CS (1987) Int J Environ Anal Chem 28:279CrossRefGoogle Scholar
  6. 6.
    Borsdorf H, Raemmler A, Schulze D, Boadu KO, Feist B, Weiss H (2001) Anal Chim Acta 440:63CrossRefGoogle Scholar
  7. 7.
    Keller T, Schneider A, Tutsch-Bauer E, Jaspers J, Aderjan R, Skopp G (1999) Int J for Ion Mobility Spectrom 2:22Google Scholar
  8. 8.
    Elias L, Lawrence AH (1987) Can J Spectrosc 32:14AGoogle Scholar
  9. 9.
    Baumbach JI (2006) Anal Bioanal Chem 384:1059CrossRefGoogle Scholar
  10. 10.
    Limero T (1998) In Recent Developments in Ion Mobility Spectrometry. In: JI Baumbach, J Stach (ed) Int. Society for Ion Mobility Spectrometry, Dortmund, Germany, 1998, ISBN 3-00-003676-8, p 317Google Scholar
  11. 11.
    Xie Z, Sielmann S, Schmidt H, Li F, Baumbach JI (2002) Anal Bioanal Chem 372:606CrossRefGoogle Scholar
  12. 12.
    Matz LM, Dion HM, Hill HH (2002) J Chrom 946:59CrossRefGoogle Scholar
  13. 13.
    Collins DC, Lee ML (2002) Anal Bioanal Chem 372:66CrossRefGoogle Scholar
  14. 14.
    Baumbach JI, Eiceman GA (1999) Appl Spectrosc 53:388ACrossRefGoogle Scholar
  15. 15.
    Hill HH, Siems WF, Louis RHSt, McMinn DG (1990) Anal Chem 62:1201ACrossRefGoogle Scholar
  16. 16.
    Louis RHSt, Hill HH (1990) Crit Rev Anal Chem 21:321CrossRefGoogle Scholar
  17. 17.
    Stach J (1997) Analytiker Taschenbuch 16:119Google Scholar
  18. 18.
    Adler J, Arnold G, Döring HR, Starrock V, Wülfling E (1998) in Recent developments in ion mobility spectrometry. Baumbach JI, Stach J (ed) Int. Society for Ion Mobility Spectrometry, Dortmund, Germany, 1998, ISBN 3-00-003676-8, p 110.Google Scholar
  19. 19.
    Giles K, Grimsrud EP (1992) J Phys Chem 96:6680CrossRefGoogle Scholar
  20. 20.
    Eiceman GA, Karpas Z (2005) Ion Mobility Spectrometry. CRC, Boca RatonGoogle Scholar
  21. 21.
    Su T, Bowers MT (1973) J Chem Phys 55:3027CrossRefGoogle Scholar
  22. 22.
    Sennhauser ES, Armstrong DA (1980) Can J Chem 58:231CrossRefGoogle Scholar
  23. 23.
    Lin SN, Griffin GW, Horning EC, Wentworth WE (1974) J Chem Phys 60:4994CrossRefGoogle Scholar
  24. 24.
    Karpas Z, Berant Z, Shahal O (1990) Int J Mass Spectrom Ion Processes 96:291CrossRefGoogle Scholar
  25. 25.
    Connolly L (1985) J Appl Cryst 18:499CrossRefGoogle Scholar
  26. 26.
    Dewar MJS, Zoebisch EG, Healy EF, Steward JJP (1985) J Am Chem Soc 107:3902CrossRefGoogle Scholar
  27. 27.
    von Helden G, Hsu MT, Kemper PR, Bowers MT (1991) J Chem Phys 95:3835CrossRefGoogle Scholar
  28. 28.
    Wyttenbach T, Witt M, Bowers MT (2000) J Am Chem Soc 122:3458CrossRefGoogle Scholar
  29. 29.
    Borsdorf H, Neitsch K, Eiceman GA, Stone JA (2009) Talanta 78:1464CrossRefGoogle Scholar
  30. 30.
    Bell SE, Ewing RG, Eiceman GA, Karpas Z (1994) J Am Soc Mass Spectrom 5:177CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department Monitoring and Exploration TechnologiesUFZ-Helmholtz Centre for Environmental ResearchLeipzigGermany

Personalised recommendations